cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119534 Largest prime divisor of numerator of the n-th Artin's product.

This page as a plain text file.
%I A119534 #13 Feb 16 2025 08:33:01
%S A119534 5,19,41,109,109,271,271,271,811,929,929,929,929,2161,2161,2161,3659,
%T A119534 4421,4969,4969,4969,4969,4969,9311,10099,10099,10099,10099,10099,
%U A119534 16001,17029,17029,19181,22051,22051,22051,22051,22051,22051,22051,32579
%N A119534 Largest prime divisor of numerator of the n-th Artin's product.
%C A119534 Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.
%H A119534 Amiram Eldar, <a href="/A119534/b119534.txt">Table of n, a(n) for n = 2..1000</a>
%H A119534 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArtinsConstant.html">Artin's Constant</a>.
%F A119534 a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].
%t A119534 Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]],{n,2,100}]
%o A119534 (Magma) [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // _Marius A. Burtea_, Feb 18 2020
%Y A119534 Cf. A091568, A091567, A005596, A048296.
%K A119534 frac,nonn
%O A119534 2,1
%A A119534 _Alexander Adamchuk_, Jul 27 2006