A119562 Let F(n) = 2^(2^n) + 1 = the n-th Fermat number, M(n) = 2^n - 1 = the n-th Mersenne number. Then a(n) = F(n) - M(n) + 1 = 2^(2^n) + 1 - (2^n - 1) + 1 = 2^(2^n) - 2^n + 3.
4, 5, 15, 251, 65523, 4294967267, 18446744073709551555, 340282366920938463463374607431768211331, 115792089237316195423570985008687907853269984665640564039457584007913129639683
Offset: 0
Keywords
Examples
F(1) = 2^(2^1)+1 = 5 M(1) = 2^1-1 = 1 F(1) - M(2) + 1 = 5
Programs
-
PARI
fm2(n) = for(x=0,n,y=2^(2^x)-2^x+3;print1(y","))
Formula
Extensions
Definition corrected by R. J. Mathar, May 15 2007