This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119586 #23 May 24 2023 12:46:18 %S A119586 2,3,4,5,9,6,7,25,8,16,11,49,10,81,12,13,121,14,625,18,64,17,169,15, %T A119586 2401,20,729,24,19,289,21,14641,28,15625,30,36,23,361,22,28561,32, %U A119586 117649,40,100,48,29,529,26,83521,44,1771561,42,196,80,1024,31,841,27 %N A119586 Triangle where T(n,m) = (n+1-m)-th positive integer with (m+1) divisors. %C A119586 From _Peter Munn_, May 17 2023: (Start) %C A119586 As a square array A(n,m), n, m >= 1, read by ascending antidiagonals, A(n,m) is the n-th positive integer with m+1 divisors. %C A119586 Thus both formats list the numbers with m+1 divisors in their m-th column. For the corresponding sequences giving numbers with a specific number of divisors see the index entries link. %C A119586 (End) %H A119586 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %e A119586 Looking at the 4th row, 7 is the 4th positive integer with 2 divisors, 25 is the 3rd positive integer with 3 divisors, 8 is the 2nd positive integer with 4 divisors and 16 is the first positive integer with 5 divisors. So the 4th row is (7,25,8,16). %e A119586 The triangle T(n,m) begins: %e A119586 n\m: 1 2 3 4 5 6 7 %e A119586 --------------------------------------------- %e A119586 1 : 2 %e A119586 2 : 3 4 %e A119586 3 : 5 9 6 %e A119586 4 : 7 25 8 16 %e A119586 5 : 11 49 10 81 12 %e A119586 6 : 13 121 14 625 18 64 %e A119586 7 : 17 169 15 2401 20 729 24 %e A119586 ... %e A119586 Square array A(n,m) begins: %e A119586 n\m: 1 2 3 4 5 ... %e A119586 -------------------------------------------- %e A119586 1 : 2 4 6 16 12 ... %e A119586 2 : 3 9 8 81 18 ... %e A119586 3 : 5 25 10 625 20 ... %e A119586 4 : 7 49 14 2401 28 ... %e A119586 5 : 11 121 15 14641 32 ... %e A119586 ... %t A119586 t[n_, m_] := Block[{c = 0, k = 1}, While[c < n + 1 - m, k++; If[DivisorSigma[0, k] == m + 1, c++ ]]; k]; Table[ t[n, m], {n, 11}, {m, n}] // Flatten (* _Robert G. Wilson v_, Jun 07 2006 *) %Y A119586 Columns: A000040, A001248, A007422, A030514, A030515, A030516, A030626, A030627, A030628, ... (see the index entries link for more). %Y A119586 Cf. A073915. %Y A119586 Diagonals (equivalently, rows of the square array) start: A005179\{1}, A161574. %Y A119586 Cf. A091538. %K A119586 nonn,tabl %O A119586 1,1 %A A119586 _Leroy Quet_, May 31 2006 %E A119586 More terms from _Robert G. Wilson v_, Jun 07 2006