cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256154 Concatenation of odd prime factors of m such that the decimal digits of m only have odd prime factors.

Original entry on oeis.org

3, 5, 7, 33, 311, 57, 37, 313, 53, 511, 319, 59, 73, 355, 711, 79, 331, 519, 97, 3311, 3337, 567, 337, 3113, 353, 571, 3717, 359, 373, 3555, 1329, 379, 3131, 579, 397, 3719, 1341, 5107, 3179, 7711, 779, 3537, 557, 1343, 3191, 5523, 577, 3193, 593, 5717, 3199, 599, 733, 3577, 1167, 739, 3251, 5151
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 14 2015

Keywords

Comments

Numbers in the sequence m cannot have even digits and 1: {3, 5, 7, 9, 33, 35, 37, 39, 53, ..., 99, 333, 335, ...}.
Subset of A256935.

Examples

			a(5) = 33 because m(5) = 9, whose odd prime factors are 3 * 3, thus 33 is the concatenation of the factors.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{of = Select[Table[#1, {#2}] & @@@ FactorInteger@ n // Flatten, PrimeQ@ # && # > 2 &]}, IntegerDigits@ of // Flatten // FromDigits]; f /@ Select[Range@ 755, Plus @@ Pick[DigitCount@#, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 1] == 0 &] (* Michael De Vlieger, Apr 14 2015 *)

A256935 Concatenation of odd prime factors of numbers whose digits are all odd.

Original entry on oeis.org

0, 3, 5, 7, 33, 11, 13, 35, 17, 19, 31, 311, 57, 37, 313, 317, 53, 511, 319, 59, 71, 73, 355, 711, 79, 713, 331, 519, 97, 3311, 337, 113, 523, 3313, 717, 131, 719, 3335, 137, 139, 151, 3317, 531, 157, 353, 3319, 173, 557, 359, 179, 191, 193, 3513, 197, 199, 311, 313, 3357, 317, 1129, 331, 3337, 567
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 13 2015

Keywords

Comments

In decimal digits of a(n) there is at least one prime.

Examples

			a(5) = 33 because the fifth odd number is 9, and the odd prime factors of 9 are 3 * 3, thus 33 is the result of the concatenation of these factors.
		

Crossrefs

Cf. A119603, A256154 (Concatenation of odd prime factors of m such that the decimal digits of m only have odd prime factors).

Programs

  • Mathematica
    f[n_] := Block[{of = Select[Table[#1, {#2}] & @@@ FactorInteger@ n // Flatten, PrimeQ@ # && # > 2 &]}, IntegerDigits@ of // Flatten // FromDigits]; f /@ Select[Range@ 360, OddQ[Times @@ IntegerDigits[#]] &] (* Michael De Vlieger, Apr 13 2015 *)
Showing 1-2 of 2 results.