A119608 Let b(1)=0, b(2)= 1. b(2^m +k) = (b(2^m+1-k) + b(k))/2, 1 <= k <= 2^m, m >= 0. a(n) is numerator of b(n).
0, 1, 1, 1, 1, 3, 3, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 15, 9, 7, 5, 11, 13, 3, 3, 13, 11, 5, 7, 9, 15, 1, 1, 31, 17, 15, 9, 23, 25, 7, 5, 27, 21, 11, 13, 19, 29, 3, 3, 29, 19, 13, 11, 21, 27, 5, 7, 25, 23, 9, 15, 17, 31, 1, 1, 63, 33, 31, 17, 47, 49, 15, 9, 55, 41, 23, 25, 39, 57, 7, 5, 59, 37
Offset: 1
Links
- Nicholas Hillier, Table of n, a(n) for n = 1..16384
Crossrefs
Cf. A053644.
Programs
-
Maple
A119608 := proc (mmax) local a,b,m,k,bn,i; b := [0,1] ; for m from 1 to mmax do for k from 1 to 2^m do bn := (b[2^m+1-k]+b[k])/2 ; b := [op(b),bn] ; od ; od ; a := [] ; for i from 1 to nops(b) do a := [op(a),numer(b[i])] ; od ; RETURN(a) ; end: an := A119608(7) : for i from 1 to nops(an) do printf("%d,",an[i]) ; od ; # R. J. Mathar, Aug 06 2006
-
R
maxlevel <- 8 # by choice b <- c(0,1) for(m in 1:maxlevel) for(k in 1:2^m) b[2^m +k] = (b[2^m+1-k] + b[k])/2 d <- vector() for(m in 0:maxlevel) for(k in 0:(2^m-1)) d[2^m + k] <- 2^m; d <- c(0,d) a <- b*d a[1:100] # Yosu Yurramendi, Feb 05 2019
-
R
a <- 1 maxlevel <- 15 # by choice for(m in 1:5) { a[2^(m+1)-1] <- 1 a[2^(m+1) ] <- 1 for(k in 1:(2^m-1)){ a[2^(m+1)-1-k] <- a[2^m+k] a[2^(m+1) +k] <- a[2^m+k]+2^(m-floor(log2(k)))*a[k] }} a <- c(0,a) a[1:128] # Yosu Yurramendi, Mar 13 2019
Formula
From Yosu Yurramendi, Mar 13 2019: (Start)
Without a(1) = 0, and shifting the terms one place left:
a(2^m) = 1, m >= 0;
a(2^(m+1)-1-k) = a(2^m+k), m >= 0, 0 < k < 2^m;
a(2^(m+1)+k) = a(2^m+k)+2^(m-floor(log_2(k)))*a(k), m >= 0, 0 < k < 2^m.
(End)
Extensions
More terms from R. J. Mathar, Aug 06 2006
Comments