A303705 a(1) = 3; a(n) is the smallest prime such that gcd(a(i)-1, a(n)-1) = 2 holds for 1 <= i < n.
3, 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1223, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2243, 2447
Offset: 1
Keywords
Examples
a(13) = 239 since lcm(a(1)-1, a(2)-1, ..., a(12)-1) = 2^2*3*5*11*23*29*41*53*83*89*113 and 239-1 = 2*7*17.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 3: L:= 2: for i from 2 to 100 do p:= nextprime(A[i-1]); while igcd(L, p-1) > 2 do p:= nextprime(p) od: A[i]:= p; L:= ilcm(L, p-1); od: seq(A[i],i=1..100); # Robert Israel, Apr 29 2018
Extensions
Corrected by Robert Israel, Apr 29 2018
Comments