cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119677 a(n) is the number of complete squares that fit inside the circle with radius n, drawn on squared paper at (0, 0).

This page as a plain text file.
%I A119677 #28 Jul 19 2024 08:48:16
%S A119677 0,0,4,16,32,60,88,120,164,216,276,332,392,476,556,648,732,832,936,
%T A119677 1052,1176,1288,1428,1560,1696,1860,2016,2180,2340,2512,2700,2876,
%U A119677 3080,3276,3488,3712,3908,4144,4360,4620,4864,5096,5356,5616,5900
%N A119677 a(n) is the number of complete squares that fit inside the circle with radius n, drawn on squared paper at (0, 0).
%H A119677 David Dewan, <a href="/A119677/b119677.txt">Table of n, a(n) for n = 0..10000</a>
%H A119677 David Dewan, <a href="/A119677/a119677.pdf">Drawings for n=1..12</a>
%F A119677 a(n) = 4 * A001182(n).
%F A119677 Limit_{n->oo} a(n)/(n^2) = Pi.
%t A119677 a[n_] := 4 Sum[Floor[Sqrt[n^2 - k^2]], {k, n - 1}];
%t A119677 Array[a, 45, 0]  (* _David Dewan_, May 27 2024 *)
%o A119677 (Python)
%o A119677 from math import isqrt
%o A119677 def A119677(n): return sum(isqrt(k*((n<<1)-k)) for k in range(1,n))<<2 # _Chai Wah Wu_, Jul 18 2024
%Y A119677 Cf. A001182.
%K A119677 nonn
%O A119677 0,3
%A A119677 Tomas Kyselica (Tomas.Kyselica(AT)gmail.com), Jul 29 2006
%E A119677 More terms from _Don Reble_, Aug 01 2006
%E A119677 Name clarified by _Kirill Zolotuskiy_, Apr 15 2023