cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119678 a(n) is the least k such that 4^k mod k = n.

Original entry on oeis.org

3, 14, 137243, 5, 6821, 10, 57, 124, 35, 18, 2791496231, 244, 51, 505, 199534799, 20, 30271293169, 49, 45, 236, 399531841, 42, 533, 25, 39, 50, 352957, 36, 995, 98, 33, 112, 47503, 55, 42345881, 44, 2981, 289, 805, 78, 1019971289, 25498, 2121, 212
Offset: 1

Views

Author

Ryan Propper, Jun 12 2006

Keywords

Comments

a(n) > n.
Numbers n > 1 such that a(n-1) = n are listed in A015950.
a(87) > 10^14.
a(11) <= 2791496231, a(17) <= 140631956671, a(53) <= 52134328061 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[PowerMod[4, k, k] != n, k++ ]; Print[k], {n, 30}]
    t = Table[0, {10000} ]; k = 1; While[ k < 5000000000, a = PowerMod[4, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* search limits expanded by Robert G. Wilson v, Jul 14 2009 *)
  • Python
    def a(n):
      k = 1
      while 4**k % k != n: k += 1
      return k
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 14 2021

Formula

a(5^k-1) = 5^k.

Extensions

a(11) = 2791496231 from Robert G. Wilson v, Feb 11 2007; confirmed by Ryan Propper, Feb 15 2007
Link corrected by R. J. Mathar, Jul 24 2009
a(83) = 3085807457009 = 113 * 331 * 82501603 from Hagen von Eitzen, Jul 27 2009