cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119706 Total length of longest runs of 1's in all bitstrings of length n.

This page as a plain text file.
%I A119706 #52 Jun 05 2025 10:13:35
%S A119706 1,4,11,27,62,138,300,643,1363,2866,5988,12448,25770,53168,109381,
%T A119706 224481,459742,939872,1918418,3910398,7961064,16190194,32893738,
%U A119706 66772387,135437649,274518868,556061298,1125679616,2277559414,4605810806,9309804278,18809961926
%N A119706 Total length of longest runs of 1's in all bitstrings of length n.
%C A119706 a(n) divided by 2^n is the expected value of the longest run of heads in n tosses of a fair coin.
%C A119706 a(n) is also the sum of the number of binary words with at least one run of consecutive 0's of length >= i for i>=1.  In other words A000225 + A008466 + A050231 + A050232 + ... . - _Geoffrey Critzer_, Jan 12 2013
%D A119706 A. M. Odlyzko, Asymptotic Enumeration Methods, pp. 136-137
%D A119706 R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 372.
%H A119706 Alois P. Heinz, <a href="/A119706/b119706.txt">Table of n, a(n) for n = 1..1000</a>
%H A119706 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus distributions</a>, arXiv:2003.09458 [math.CO], 2020.
%F A119706 a(n+1) = 2*a(n) + A007059(n+2)
%F A119706 a(n) > 2*a(n-1). a(n) = Sum_{i=1..(2^n)-1} A038374(i). - _R. J. Mathar_, Jun 15 2006
%F A119706 From _Geoffrey Critzer_, Jan 12 2013: (Start)
%F A119706 O.g.f.: Sum_{k>=1} 1/(1-2*x) - (1-x^k)/(1-2*x+x^(k+1)). - Corrected by _Steven Finch_, May 16 2020
%F A119706 a(n) = Sum_{k=1..n} A048004(n,k) * k.
%F A119706 (End)
%F A119706 Conjecture: a(n) = A102712(n+1)-2^n. - _R. J. Mathar_, Jun 05 2025
%e A119706 a(3)=11 because for the 8(2^3) possible runs 0 is longest run of heads once, 1 four times, 2 two times and 3 once and 0*1+1*4+2*2+3*1 = 11.
%p A119706 A038374 := proc(n) local nshft, thisr, resul; nshft := n ; resul :=0 ; thisr :=0 ; while nshft > 0 do if nshft mod 2 <> 0 then thisr := thisr+1 ; else resul := max(resul, thisr) ; thisr := 0 ; fi ; nshft := floor(nshft/2) ; od ; resul := max(resul, thisr) ; RETURN(resul) ; end : A119706 := proc(n) local count, c, rlen ; count := array(0..n) ; for c from 0 to n do count[c] := 0 ; od ; for c from 0 to 2^n-1 do rlen := A038374(c) ; count[rlen] := count[rlen]+1 ; od ; RETURN( sum('count[c]*c','c'=0..n) ); end: for n from 1 to 40 do print(n,A119706(n)) ; od : # _R. J. Mathar_, Jun 15 2006
%p A119706 # second Maple program:
%p A119706 b:= proc(n, m) option remember; `if`(n=0, 1,
%p A119706       `if`(m=0, add(b(n-j, j), j=1..n),
%p A119706       add(b(n-j, min(n-j, m)), j=1..min(n, m))))
%p A119706     end:
%p A119706 a:= proc(n) option remember;
%p A119706      `if`(n<2, n, 2*a(n-1) +b(n, 0))
%p A119706     end:
%p A119706 seq(a(n), n=1..40);  # _Alois P. Heinz_, Dec 19 2014
%t A119706 nn=10;Drop[Apply[Plus,Table[CoefficientList[Series[1/(1-2x)-(1-x^n)/(1-2x+x^(n+1)),{x,0,nn}],x],{n,1,nn}]],1]  (* _Geoffrey Critzer_, Jan 12 2013 *)
%Y A119706 Cf. A334833.
%K A119706 nonn
%O A119706 1,2
%A A119706 _Adam Kertesz_, Jun 09 2006, Jun 13 2006
%E A119706 More terms from _R. J. Mathar_, Jun 15 2006
%E A119706 Name edited by _Alois P. Heinz_, Mar 18 2020