cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119713 First differences are 2, 5, 5, 9, 9, 9, 14, 14, 14, 14, ..., that is, A000096 with m-th term repeated m times (m>=1).

This page as a plain text file.
%I A119713 #12 Nov 09 2024 00:57:02
%S A119713 0,2,7,12,21,30,39,53,67,81,95,115,135,155,175,195,222,249,276,303,
%T A119713 330,357,392,427,462,497,532,567,602,646,690,734,778,822,866,910,954,
%U A119713 1008,1062,1116,1170,1224,1278,1332,1386,1440,1505,1570,1635,1700,1765,1830
%N A119713 First differences are 2, 5, 5, 9, 9, 9, 14, 14, 14, 14, ..., that is, A000096 with m-th term repeated m times (m>=1).
%D A119713 David Pagni, Building buildings with triangular numbers, AMATYC Review (vol. 27 no. 2 spring 2006, pp. 56-65).
%F A119713 a(n) = m(12n+m(4n-m(m+2)+1)+2)/8 where m = A002024(n). - _Chai Wah Wu_, Nov 08 2024
%t A119713 a = 10; lst = {0}; s = 0; t = Flatten@ Table[ Table[n*(n + 3)/2, {n}], {n, a}]; Do[ AppendTo[lst, s = s + t[[n]]], {n, a(a+1)/2}]; lst (* _Robert G. Wilson v_, Jun 16 2006 *)
%o A119713 (Python)
%o A119713 from math import isqrt
%o A119713 def A119713(n): return (r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(12*n+r*((n<<2)-r*(r+2)+1)+2)>>3 # _Chai Wah Wu_, Nov 08 2024
%Y A119713 Cf. A000096, A002024.
%K A119713 nonn
%O A119713 0,2
%A A119713 _N. J. A. Sloane_, Jun 13 2006
%E A119713 More terms from _Robert G. Wilson v_, Jun 16 2006