This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119725 #18 Sep 08 2022 08:45:25 %S A119725 1,1,1,1,5,1,1,13,17,1,1,29,73,53,1,1,61,233,325,161,1,1,125,649,1349, %T A119725 1297,485,1,1,253,1673,4645,6641,4861,1457,1,1,509,4105,14309,27217, %U A119725 29645,17497,4373,1,1,1021,9737,40933,97361,140941,123929,61237,13121,1 %N A119725 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k). %C A119725 Second column is like A036563. %C A119725 Second diagonal is A048473. %H A119725 G. C. Greubel, <a href="/A119725/b119725.txt">Rows n = 1..100 of triangle, flattened</a> %H A119725 Termeszet Vilaga A XI. Természet-Tudomány Diákpályázat díjnyertesei 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): <a href="http://www.termeszetvilaga.hu/tv2002/tv0206/tartalom.html">Pascal-tipusu haromszogek</a> %e A119725 Triangle begins: %e A119725 1; %e A119725 1, 1; %e A119725 1, 5, 1; %e A119725 1, 13, 17, 1; %e A119725 1, 29, 73, 53, 1; %e A119725 1, 61, 233, 325, 161, 1; %e A119725 1, 125, 649, 1349, 1297, 485, 1; %e A119725 1, 253, 1673, 4645, 6641, 4861, 1457, 1; %e A119725 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1; %e A119725 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1; %p A119725 T:= proc(n, k) option remember; %p A119725 if k=1 and k=n then 1 %p A119725 else 3*T(n-1, k-1) + 2*T(n-1, k) %p A119725 fi %p A119725 end: %p A119725 seq(seq(T(n, k), k=1..n), n=1..12); # _G. C. Greubel_, Nov 18 2019 %t A119725 T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 3*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* _G. C. Greubel_, Nov 18 2019 *) %o A119725 (PARI) T(n,k) = if(k==1 || k==n, 1, 3*T(n-1,k-1) + 2*T(n-1,k)); \\ _G. C. Greubel_, Nov 18 2019 %o A119725 (Magma) %o A119725 function T(n,k) %o A119725 if k eq 1 or k eq n then return 1; %o A119725 else return 3*T(n-1,k-1) + 2*T(n-1,k); %o A119725 end if; %o A119725 return T; %o A119725 end function; %o A119725 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 18 2019 %o A119725 (Sage) %o A119725 @CachedFunction %o A119725 def T(n, k): %o A119725 if (k==1 or k==n): return 1 %o A119725 else: return 3*T(n-1, k-1) + 2*T(n-1, k) %o A119725 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 18 2019 %Y A119725 Cf. A007318, A036563, A048473, A119726, A119727. %K A119725 easy,nonn,tabl %O A119725 1,5 %A A119725 _Zerinvary Lajos_, Jun 14 2006 %E A119725 Edited by _Don Reble_, Jul 24 2006