This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119726 #8 Sep 08 2022 08:45:25 %S A119726 1,1,1,1,6,1,1,16,26,1,1,36,116,106,1,1,76,376,676,426,1,1,156,1056, %T A119726 2856,3556,1706,1,1,316,2736,9936,18536,17636,6826,1,1,636,6736,30816, %U A119726 76816,109416,84196,27306,1,1,1276,16016,88576,276896,526096,606056,391396,109226,1 %N A119726 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 4*T(n-1, k-1) + 2*T(n-1, k). %C A119726 Second column is A048487. %C A119726 Second diagonal is A020989. %D A119726 TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html %H A119726 G. C. Greubel, <a href="/A119726/b119726.txt">Rows n = 1..100 of triangle, flattened</a> %e A119726 Triangle begins as: %e A119726 1; %e A119726 1, 1; %e A119726 1, 6, 1; %e A119726 1, 16, 26, 1; %e A119726 1, 36, 116, 106, 1; %e A119726 1, 76, 376, 676, 426, 1; %e A119726 1, 156, 1056, 2856, 3556, 1706, 1; %e A119726 1, 316, 2736, 9936, 18536, 17636, 6826, 1; %e A119726 1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1; %e A119726 1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1; %p A119726 T:= proc(n, k) option remember; %p A119726 if k=1 and k=n then 1 %p A119726 else 4*T(n-1, k-1) + 2*T(n-1, k) %p A119726 fi %p A119726 end: seq(seq(T(n, k), k=1..n), n=1..12); # _G. C. Greubel_, Nov 18 2019 %t A119726 T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 4*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* _G. C. Greubel_, Nov 18 2019 *) %o A119726 (PARI) T(n,k) = if(k==1 || k==n, 1, 4*T(n-1,k-1) + 2*T(n-1,k)); %o A119726 (Magma) %o A119726 function T(n,k) %o A119726 if k eq 1 or k eq n then return 1; %o A119726 else return 4*T(n-1,k-1) + 2*T(n-1,k); %o A119726 end if; %o A119726 return T; %o A119726 end function; %o A119726 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 18 2019 %o A119726 (Sage) %o A119726 @CachedFunction %o A119726 def T(n, k): %o A119726 if (k==1 or k==n): return 1 %o A119726 else: return 4*T(n-1, k-1) + 2*T(n-1, k) %o A119726 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 18 2019 %Y A119726 Cf. A007318, A020989, A048483, A048487, A119725, A119727, A123208. %K A119726 easy,nonn,tabl %O A119726 1,5 %A A119726 _Zerinvary Lajos_, Jun 14 2006 %E A119726 Edited by _Don Reble_, Jul 24 2006