cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119741 A008279, with the first and last of each row removed.

This page as a plain text file.
%I A119741 #26 Aug 22 2025 20:02:04
%S A119741 2,3,6,4,12,24,5,20,60,120,6,30,120,360,720,7,42,210,840,2520,5040,8,
%T A119741 56,336,1680,6720,20160,40320,9,72,504,3024,15120,60480,181440,362880,
%U A119741 10,90,720,5040,30240,151200,604800,1814400,3628800,11,110,990,7920,55440,332640,1663200,6652800,19958400,39916800
%N A119741 A008279, with the first and last of each row removed.
%C A119741 Triangle read by rows: T(n,k) (n>=2, k=1..n-1) is the number of topologies t on n points having exactly k+2 open sets such that t contains exactly one open set of size m for each m in {0,1,2,...,s,n} where s is the size of the largest proper open set in t. - _N. J. A. Sloane_, Jan 29 2016 [clarified by _Geoffrey Critzer_, Feb 19 2017]
%H A119741 Andrew Howroyd, <a href="/A119741/b119741.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows)
%H A119741 G. A. Kamel, <a href="http://www.aascit.org/journal/archive2?journalId=928&amp;paperId=2310">Partial Chain Topologies on Finite Sets</a>, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
%F A119741 a(n) = (A003057(n))!/(A004736(n))! = (A002260(n))!*(A014410(n)).
%F A119741 T(n,k) = A173333(n+1,n-k+1), 1<=k<=n. - _Reinhard Zumkeller_, Feb 19 2010
%e A119741 Triangle begins:
%e A119741    2;
%e A119741    3,  6;
%e A119741    4, 12,  24;
%e A119741    5, 20,  60,  120;
%e A119741    6, 30, 120,  360,   720;
%e A119741    7, 42, 210,  840,  2520,   5040;
%e A119741    8, 56, 336, 1680,  6720,  20160,  40320;
%e A119741    9, 72, 504, 3024, 15120,  60480, 181440,  362880;
%e A119741   10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800;
%e A119741   ...
%p A119741 T:= (n, k)-> n!/(n-k)!:
%p A119741 seq(seq(T(n,k), k=1..n-1), n=2..11);  # _Alois P. Heinz_, Aug 22 2025
%t A119741 Table[FactorialPower[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Feb 21 2020 *)
%Y A119741 Row sums give A038156.
%Y A119741 Triangles in this series: A268216, A268217, A268221, A268222, A268223.
%Y A119741 Cf. A008279, A014631, A282507.
%K A119741 nonn,tabl,changed
%O A119741 2,1
%A A119741 _Lekraj Beedassy_, Jul 29 2006
%E A119741 Edited by _Don Reble_, Aug 01 2006