This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119741 #26 Aug 22 2025 20:02:04 %S A119741 2,3,6,4,12,24,5,20,60,120,6,30,120,360,720,7,42,210,840,2520,5040,8, %T A119741 56,336,1680,6720,20160,40320,9,72,504,3024,15120,60480,181440,362880, %U A119741 10,90,720,5040,30240,151200,604800,1814400,3628800,11,110,990,7920,55440,332640,1663200,6652800,19958400,39916800 %N A119741 A008279, with the first and last of each row removed. %C A119741 Triangle read by rows: T(n,k) (n>=2, k=1..n-1) is the number of topologies t on n points having exactly k+2 open sets such that t contains exactly one open set of size m for each m in {0,1,2,...,s,n} where s is the size of the largest proper open set in t. - _N. J. A. Sloane_, Jan 29 2016 [clarified by _Geoffrey Critzer_, Feb 19 2017] %H A119741 Andrew Howroyd, <a href="/A119741/b119741.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows) %H A119741 G. A. Kamel, <a href="http://www.aascit.org/journal/archive2?journalId=928&paperId=2310">Partial Chain Topologies on Finite Sets</a>, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179. %F A119741 a(n) = (A003057(n))!/(A004736(n))! = (A002260(n))!*(A014410(n)). %F A119741 T(n,k) = A173333(n+1,n-k+1), 1<=k<=n. - _Reinhard Zumkeller_, Feb 19 2010 %e A119741 Triangle begins: %e A119741 2; %e A119741 3, 6; %e A119741 4, 12, 24; %e A119741 5, 20, 60, 120; %e A119741 6, 30, 120, 360, 720; %e A119741 7, 42, 210, 840, 2520, 5040; %e A119741 8, 56, 336, 1680, 6720, 20160, 40320; %e A119741 9, 72, 504, 3024, 15120, 60480, 181440, 362880; %e A119741 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800; %e A119741 ... %p A119741 T:= (n, k)-> n!/(n-k)!: %p A119741 seq(seq(T(n,k), k=1..n-1), n=2..11); # _Alois P. Heinz_, Aug 22 2025 %t A119741 Table[FactorialPower[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Feb 21 2020 *) %Y A119741 Row sums give A038156. %Y A119741 Triangles in this series: A268216, A268217, A268221, A268222, A268223. %Y A119741 Cf. A008279, A014631, A282507. %K A119741 nonn,tabl,changed %O A119741 2,1 %A A119741 _Lekraj Beedassy_, Jul 29 2006 %E A119741 Edited by _Don Reble_, Aug 01 2006