cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292835 Triangle C(nu,m) read by rows: the number of n-color odd compositions of nu into m parts.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 0, 6, 0, 1, 0, 5, 0, 9, 0, 1, 0, 0, 19, 0, 12, 0, 1, 0, 7, 0, 42, 0, 15, 0, 1, 0, 0, 44, 0, 74, 0, 18, 0, 1, 0, 9, 0, 138, 0, 115, 0, 21, 0, 1, 0, 0, 85, 0, 316, 0, 165, 0, 24, 0, 1, 0, 11, 0, 363, 0, 605, 0, 224, 0, 27, 0, 1, 0, 0, 146, 0, 1059, 0, 1032, 0, 292, 0, 30, 0, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 24 2017

Keywords

Examples

			The triangle starts in row nu=0 with columns 0<=m<=nu as
1;
0,1;
0,0,1;
0,3,0,1;
0,0,6,0,1;
0,5,0,9,0,1;
0,0,19,0,12,0,1;
0,7,0,42,0,15,0,1;
0,0,44,0,74,0,18,0,1;
0,9,0,138,0,115,0,21,0,1;
0,0,85,0,316,0,165,0,24,0,1;
0,11,0,363,0,605,0,224,0,27,0,1;
		

Crossrefs

Cf. A119749 (row sums), A005900 (column m=3), A300437.

Programs

  • Maple
    A292835 := proc(nu,m)
        local a,j,i ;
        a := 0 ;
        for j from 0 to m do
            i := (nu-m)/2-j ;
            if type(i,integer) then
                a := a+binomial(2*m+i-1,2*m-1)*binomial(m,j) ;
            end if;
        end do:
        a;
    end proc:
    seq(seq(A292835(nu,m),m=0..nu),nu=0..12) ;
  • Mathematica
    A292835[nu_, m_] := Module[{a, j, i}, a = 0; For[j = 0, j <= m, j++, i = (nu - m)/2 - j; If[IntegerQ[i], a = a + Binomial[2m + i - 1, 2m - 1]* Binomial[m, j]]]; a];
    Table[Table[A292835[nu, m], {m, 0, nu}], {nu, 0, 12}] // Flatten (* Jean-François Alcover, Aug 15 2023, after Maple code *)

A300438 Expansion of (1+x)^3/(1-x-2*x^2-x^3+x^4).

Original entry on oeis.org

1, 4, 9, 19, 40, 83, 173, 360, 749, 1559, 3244, 6751, 14049, 29236, 60841, 126611, 263480, 548307, 1141037, 2374520, 4941421, 10283191, 21399516, 44532799, 92673601, 192855524, 401336009, 835187859, 1738041800, 3616898003, 7526833453, 15663483400, 32596006509, 67832908759, 141161571724, 293759912351
Offset: 0

Views

Author

R. J. Mathar, Mar 05 2018

Keywords

Comments

The number of N-color odd self-inverse compositions of (2*n+1).

Crossrefs

Row sums of A300437.
Cf. A119749.
Showing 1-2 of 2 results.