This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119758 #9 May 31 2022 11:23:13 %S A119758 1,3,20,225,3789,89341,2821552,115377921,5939637425,375840753541, %T A119758 28641787322796,2583828842108449,271949027324094925, %U A119758 32986652806128680205,4563200871898056653504,713455071424061222336513 %N A119758 Numerator of Sum_{k=1..n} k^n/n^k. %C A119758 a(p-1) is divisible by prime p>2. a(p) is divisible by ((p+1)/2)^2 for prime p>2. %C A119758 Denominator of Sum[k^n/n^k,{k,1,n}] is equal to n^(n-1) = A000169(n). - _Alexander Adamchuk_, Jun 27 2006 %F A119758 a(n) = numerator(Sum_{k=1..n} k^n/n^k). %F A119758 a(n) = n^(n-1)*(Sum_{k=1..n} k^n/n^k). - _Alexander Adamchuk_, Jun 27 2006 %F A119758 a(2m) is divisible by 2m+1 for integer m>0. a(2m-1) is divisible by m^2 for integer m>0. - _Alexander Adamchuk_, Jun 27 2006 %t A119758 Table[Numerator[Sum[k^n/n^k,{k,1,n}]],{n,1,20}] %t A119758 Table[Sum[k^n/n^k,{k,1,n}]*n^(n-1),{n,1,50}] (* _Alexander Adamchuk_, Jun 27 2006 *) %o A119758 (PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ _Michel Marcus_, May 31 2022 %Y A119758 Cf. A023037, A031971. %Y A119758 Cf. A000169. %K A119758 frac,nonn %O A119758 1,2 %A A119758 _Alexander Adamchuk_, Jun 18 2006, Jun 25 2006