A119767 Perfect powers which are the sum of twin prime pairs.
8, 36, 144, 216, 1764, 2304, 5184, 7056, 8100, 30276, 41616, 69696, 93636, 138384, 166464, 207936, 224676, 279936, 298116, 352836, 360000, 412164, 562500, 725904, 777924, 876096, 944784, 956484, 1077444, 1299600, 1468944, 1617984, 1920996, 2160900, 2286144, 2304324, 2509056
Offset: 1
Examples
8 = 2^3 = 3 + 5 (twin primes). Thus 8 is a member of this sequence. 36 = 6^2 = 17 + 19 (twin primes). Thus 36 is a member of this sequence. a(3) = 71 + 73 = 144.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
egcd := proc(n::nonnegint) local L; if n=0 or n=1 then n else L:=ifactors(n)[2]; L:=map(z->z[2],L); igcd(op(L)) fi end: L:=[]: for w to 1 do for x from 1 to 2*12^2 do s:=6*x; for r from 2 to 79 do t:=s^r; if egcd(s)=1 and andmap(isprime,[(t-2)/2,(t+2)/2]) then print((t-2)/2,(t+2)/2,t)); L:=[op(L),[(t-2)/2,(t+2)/2,t]]; fi; od od od; L:=sort(L,(a,b)->a[1]z[3],L);
-
Mathematica
Lim=2600000;ts=Select[Prime[Range[PrimePi[Lim]]], PrimeQ[# + 2] &]2+2;pp=Join[{1}, Select[Range[Lim], GCD@@FactorInteger[#][[All, 2]]>1&]] ;s={};Do[ If[MemberQ[ pp,ts[[n]]],AppendTo[s,ts[[n]]]] ,{n,Length[ts]}];s (* James C. McMahon, Sep 18 2024 *)
-
PARI
a(N) = for(n=1,N,if(ispower(n),if(nextprime(n/2)-precprime(n/2)==2&&precprime(n/2)+nextprime(n/2)==n,print1(n,", ")))) \\ vary the program's range for any N; Derek Orr, Jul 27 2014
Extensions
R. J. Mathar pointed out that 8 was missing. Once corrected, the old A245591 could be merged into this entry. - N. J. A. Sloane, Jul 30 2014
Comments