This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119789 #13 Dec 19 2022 03:26:17 %S A119789 0,0,0,0,0,0,1,1,1,2,2,2,2,3,4,3,3,3,4,5,6,4,4,4,5,6,7,8,5,5,5,6,7,8, %T A119789 9,10,6,6,6,7,8,9,10,11,12,7,7,7,8,9,10,11,12,13,14,8,8,8,9,10,11,12, %U A119789 13,14,15,16 %N A119789 T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2, triangle read by rows. %H A119789 G. C. Greubel, <a href="/A119789/b119789.txt">Rows n = 0..50 of the triangle, flattened</a> %F A119789 T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2. %F A119789 From _G. C. Greubel_, Dec 17 2022: (Start) %F A119789 T(n, k) = n+k-4, with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n >= 3. %F A119789 T(n, n) = 2*T(n, 0). %F A119789 T(2*n, n) = 0*[n<2] + A016789(n-2)*[n>1]. %F A119789 T(2*n, n+1) = 3*A001477(n-1), for n > 0. %F A119789 T(2*n, n-1) = A033627(n) - [n=1]. %F A119789 T(3*n, n) = n*[n<2] + 4*A000027(n-2)*[n>1]. %F A119789 Sum_{k=0..n} T(n, k) = 0*[n<2] + A140090(n-2)*[n>1]. %F A119789 Sum_{k=0..n} (-1)^k * T(n, k) = 0*[n<2] + (-1)^n*A064455(n-2)*[n>1]. (End) %e A119789 Triangle begins as: %e A119789 0; %e A119789 0, 0; %e A119789 0, 0, 0; %e A119789 1, 1, 1, 2; %e A119789 2, 2, 2, 3, 4; %e A119789 3, 3, 3, 4, 5, 6; %e A119789 4, 4, 4, 5, 6, 7, 8; %e A119789 5, 5, 5, 6, 7, 8, 9, 10; %t A119789 f[n_, k_]= If[n<3, 0, If[k==0, n-2, Floor[Log[GoldenRatio, Fibonacci[n]*Fibonacci[k]]]]]; %t A119789 Table[f[n, k], {n,0,12}, {k,0,n}]//Flatten %t A119789 (* Second program *) %t A119789 T[n_, k_]:= T[n, k]= If[n<3, 0, If[k<2, n-2, n+k-4]]; %t A119789 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 17 2022 *) %o A119789 (Magma) %o A119789 A119789:= func< n,k | n le 2 select 0 else k le 1 select n-2 else n+k-4 >; %o A119789 [A119789(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 17 2022 %o A119789 (SageMath) %o A119789 def A119789(n,k): %o A119789 if (n<3): return 0 %o A119789 elif (k<2): return n-2 %o A119789 else: return n+k-4 %o A119789 flatten([[A119789(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Dec 17 2022 %Y A119789 Cf. A000045, A001477, A016789, A033627, A035517, A064455, A140090. %K A119789 nonn,tabl %O A119789 0,10 %A A119789 _Roger L. Bagula_, Jul 30 2006 %E A119789 Edited by _G. C. Greubel_, Dec 17 2022