This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119800 #35 Oct 18 2024 17:55:43 %S A119800 4,8,6,12,18,8,16,38,32,10,20,66,88,50,12,24,102,192,170,72,14,28,146, %T A119800 360,450,292,98,16,32,198,608,1002,912,462,128,18,36,258,952,1970, %U A119800 2364,1666,688,162,20,40,326,1408,3530,5336,4942,2816,978,200,22 %N A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals). %H A119800 Alois P. Heinz, <a href="/A119800/b119800.txt">Antidiagonals n = 1..141, flattened</a> %H A119800 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3. %H A119800 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>). %H A119800 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. %F A119800 A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2. %e A119800 The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron. %e A119800 The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n. %e A119800 The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420. %e A119800 The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603. %e A119800 The main diagonal seems to be A050146. %e A119800 Square array A(n,k) begins: %e A119800 4, 8, 12, 16, 20, 24, 28, 32, 36, ... %e A119800 6, 18, 38, 66, 102, 146, 198, 258, 326, ... %e A119800 8, 32, 88, 192, 360, 608, 952, 1408, 1992, ... %e A119800 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, ... %e A119800 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, ... %e A119800 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, ... %e A119800 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, ... %e A119800 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146, ... %e A119800 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ... %p A119800 A:= proc(m, n) option remember; %p A119800 `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1))) %p A119800 end: %p A119800 seq(seq(A(n, 1+d-n), n=1..d), d=1..10); # _Alois P. Heinz_, Apr 21 2012 %t A119800 A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *) %o A119800 Excel cell formula: =Z(-1)S(-1)+Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... The very first column (not included into the table) contains the initialization values: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Note that the first cell is common to both the initialization row and initialization column and it equal to 1. %Y A119800 Other versions: A035607, A113413, A122542, A266213. %Y A119800 Cf. A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420, A005843, A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603, A050146. %K A119800 easy,nonn,tabl %O A119800 1,1 %A A119800 _Thomas Wieder_, Jul 30 2006, Aug 06 2006 %E A119800 Offset and typos corrected by _Alois P. Heinz_, Apr 21 2012