cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

This page as a plain text file.
%I A119800 #35 Oct 18 2024 17:55:43
%S A119800 4,8,6,12,18,8,16,38,32,10,20,66,88,50,12,24,102,192,170,72,14,28,146,
%T A119800 360,450,292,98,16,32,198,608,1002,912,462,128,18,36,258,952,1970,
%U A119800 2364,1666,688,162,20,40,326,1408,3530,5336,4942,2816,978,200,22
%N A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).
%H A119800 Alois P. Heinz, <a href="/A119800/b119800.txt">Antidiagonals n = 1..141, flattened</a>
%H A119800 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
%H A119800 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H A119800 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%F A119800 A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.
%e A119800 The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
%e A119800 The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
%e A119800 The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
%e A119800 The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
%e A119800 The main diagonal seems to be A050146.
%e A119800 Square array A(n,k) begins:
%e A119800    4,   8,   12,   16,    20,    24,     28,     32,      36, ...
%e A119800    6,  18,   38,   66,   102,   146,    198,    258,     326, ...
%e A119800    8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
%e A119800   10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
%e A119800   12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
%e A119800   14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
%e A119800   16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
%e A119800   18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
%e A119800   20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
%p A119800 A:= proc(m, n)  option remember;
%p A119800       `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
%p A119800     end:
%p A119800 seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # _Alois P. Heinz_, Apr 21 2012
%t A119800 A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *)
%o A119800 Excel cell formula: =Z(-1)S(-1)+Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... The very first column (not included into the table) contains the initialization values: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Note that the first cell is common to both the initialization row and initialization column and it equal to 1.
%Y A119800 Other versions: A035607, A113413, A122542, A266213.
%Y A119800 Cf. A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420, A005843, A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603, A050146.
%K A119800 easy,nonn,tabl
%O A119800 1,1
%A A119800 _Thomas Wieder_, Jul 30 2006, Aug 06 2006
%E A119800 Offset and typos corrected by _Alois P. Heinz_, Apr 21 2012