This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119802 #35 Oct 14 2023 23:48:15 %S A119802 1,1,2,2,2,2,4,4,2,2,6,6,6,6,2,2,2,2,10,10,10,10,2,2,12,12,4,4,4,4,12, %T A119802 12,2,2,14,14,14,14,6,6,14,14,6,7,7,7,14,14,14,14,4,4,4,4,14,14,4,4, %U A119802 12,12,12,12,8,8,2,2,16,16,16,16,12,12,16,16,7,7,7,7,16,16,16,16,4,4,4,4 %N A119802 a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal a(k). %C A119802 Interpreted as a triangle with row lengths A011782, row m+1 is the frequency of each term in rows 1..m among terms in the sequence thus far (including the part of row m+1 itself thus far). - _Neal Gersh Tolunsky_, Oct 03 2023 %H A119802 Neal Gersh Tolunsky, <a href="/A119802/b119802.txt">Table of n, a(n) for n = 1..10000</a> %H A119802 Neal Gersh Tolunsky, <a href="/A119802/a119802.png">Run length transform of 2^16 terms</a> %e A119802 8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal a(4) = 2. So a(8) = 4. %e A119802 As a triangle: %e A119802 k=1 2 3 4 5 6 7 8 ... %e A119802 m=1: 1; %e A119802 m=2: 1; %e A119802 m=3: 2, 2; %e A119802 m=4: 2, 2, 4, 4; %e A119802 m=5: 2, 2, 6, 6, 6, 6, 2, 2; %e A119802 m=6: 2, 2, 10, 10, 10, 10, 2, 2, 12, 12, 4, 4, 4, 4, 12, 12; %e A119802 ... %o A119802 (PARI) A119802(mmax)= { local(a,ncopr); a=[1]; for(m=0,mmax, for(k=1,2^m, ncopr=0; for(i=1,2^m+k-1, if( a[i]==a[k], ncopr++; ); ); a=concat(a,ncopr); ); ); return(a); } %o A119802 print(A119802(6)); \\ _R. J. Mathar_, May 30 2006 %Y A119802 Cf. A119803, A011782 (row lengths), A365882. %K A119802 easy,nonn %O A119802 1,3 %A A119802 _Leroy Quet_, May 24 2006 %E A119802 More terms from _R. J. Mathar_, May 30 2006