cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119810 Partial quotients of the continued fraction of the constant defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.

This page as a plain text file.
%I A119810 #15 May 30 2019 04:50:35
%S A119810 2,3,10,132,131104,2199023259648,633825300114114700748888473600,
%T A119810 883423532389192164791648750371459257913741948437810659652423818057613312
%N A119810 Partial quotients of the continued fraction of the constant defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.
%C A119810 Convergents A119811: [2/1,7/3,72/31,9511/4095,1246930216/536870911,...], where the denominators of the convergents are equal to [2^A000129(n-1)-1] and A000129 is the Pell numbers. The number of digits in these partial quotients are (beginning at n=1): [1,1,2,3,6,13,30,72,174,420,1013,2445,5901,14246,34391,83027,...].
%H A119810 W. W. Adams and J. L. Davison, <a href="https://doi.org/10.1090/S0002-9939-1977-0441879-4">A remarkable class of continued fractions</a>, Proc. Amer. Math. Soc. 65 (1977), 194-198.
%H A119810 P. G. Anderson, T. C. Brown, P. J.-S. Shiue, <a href="http://people.math.sfu.ca/~vjungic/tbrown/tom-28.pdf">A simple proof of a remarkable continued fraction identity</a>, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
%H A119810 J. L. Davison, <a href="https://dx.doi.org/10.1090/S0002-9939-1977-0429778-5">A series and its associated continued fraction</a>, Proc. Amer. Math. Soc., 63 (1977), 29-32.
%F A119810 a(n) = 2^A001333(n-1) + 2^A000129(n-2) for n>1, with a(1)=2.
%e A119810 c = 2.32258852258806773012144068278798408011950250800432925665718...
%e A119810 The partial quotients start:
%e A119810 a(1) = 2^1; a(2) = 2^1 + 2^0; a(3) = 2^3 + 2^1;
%e A119810 a(4) = 2^7 + 2^2; a(5) = 2^17 + 2^5; a(6) = 2^41 + 2^12;
%e A119810 and continue as a(n) = 2^A001333(n-1) + 2^A000129(n-2) where
%e A119810 A001333(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n )/2;
%e A119810 A000129(n) = ( (1+sqrt(2))^n - (1-sqrt(2))^n )/(2*sqrt(2)).
%t A119810 (* b = A001333 *) b[0] = 1; b[1] = 1; b[n_] := b[n] = 2 b[n-1] + b[n-2]; a[1] = 2; a[n_] := 2^b[n-1] + 2^Fibonacci[n-2, 2]; Array[a, 10] (* _Jean-François Alcover_, May 04 2017 *)
%o A119810 (PARI) {a(n)=if(n==1,2,2^round(((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))/2) +2^round(((1+sqrt(2))^(n-2)-(1-sqrt(2))^(n-2))/(2*sqrt(2))))}
%Y A119810 Cf. A119809 (decimal expansion), A119811 (convergents); A119812 (dual constant).
%K A119810 cofr,nonn
%O A119810 1,1
%A A119810 _Paul D. Hanna_, May 26 2006