cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119811 Numerators of the convergents to the continued fraction for the constant A119809 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.

This page as a plain text file.
%I A119811 #3 Mar 30 2012 18:36:57
%S A119811 2,7,72,9511,1246930216,2742028548141904733479,
%T A119811 1737967067447512977484869808775151193351704374584616
%N A119811 Numerators of the convergents to the continued fraction for the constant A119809 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.
%C A119811 The number of digits in these numerators are (beginning at n=1): [1,1,2,4,10,22,52,124,297,717,1729,4173,10074,24319,58709,141735,..].
%e A119811 c = 2.32258852258806773012144068278798408011950250800432925665718...
%e A119811 Convergents begin:
%e A119811 [2/1, 7/3, 72/31, 9511/4095, 1246930216/536870911,...]
%e A119811 where the denominators of the convergents equal [2^A000129(n-1)-1]:
%e A119811 [1,3,31,4095,536870911,1180591620717411303423,...],
%e A119811 and A000129 is the Pell numbers.
%o A119811 (PARI) {a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,2, 2^round(((1+sqrt(2))^(k-1)+(1-sqrt(2))^(k-1))/2) +2^round(((1+sqrt(2))^(k-2)-(1-sqrt(2))^(k-2))/(2*sqrt(2))))))); return(M[1,1])}
%Y A119811 Cf. A119809 (constant), A119811 (continued fraction), A000129; A119812 (dual constant).
%K A119811 frac,nonn
%O A119811 1,1
%A A119811 _Paul D. Hanna_, May 26 2006