This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119813 #7 Nov 22 2013 10:12:34 %S A119813 0,1,6,18,1032,16777344,288230376151842816, %T A119813 1393796574908163946345982392042721617379328 %N A119813 Partial quotients of the continued fraction of the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n). %C A119813 Convergents begin: [0/1, 1/1, 6/7, 109/127, 112494/131071,...], where the denominators of the convergents are equal to [2^A001333(n-1)-1], where A001333 are numerators of continued fraction convergents to sqrt(2). The number of digits in these partial quotients are (beginning at n=2): [1,1,2,4,8,18,43,102,246,594,1432,3457,8345,20146,48636,117417,...]. %H A119813 W. W. Adams and J. L. Davison, <a href="http://www.jstor.org/stable/2041889">A remarkable class of continued fractions</a>, Proc. Amer. Math. Soc. 65 (1977), 194-198. %H A119813 P. G. Anderson, T. C. Brown, P. J.-S. Shiue, <a href="http://people.math.sfu.ca/~vjungic/tbrown/tom-28.pdf">A simple proof of a remarkable continued fraction identity</a> Proc. Amer. Math. Soc. 123 (1995), 2005-2009. %F A119813 a(n) = 4^A000129(n-2) + 2^A001333(n-3) for n>2, with a(1)=0, a(2)=1. %e A119813 c = 0.858267656461002055792260308433375148664905190083506778667684867.. %e A119813 The partial quotients start: %e A119813 a(1) = 0; a(2) = 1; a(3) = 4^1 + 2^1; a(4) = 4^2 + 2^1; %e A119813 a(5) = 4^5 + 2^3; a(6) = 4^12 + 2^7; a(7) = 4^29 + 2^17; %e A119813 and continue as a(n) = 4^A000129(n-2) + 2^A001333(n-3) where %e A119813 A000129(n) = ( (1+sqrt(2))^n - (1-sqrt(2))^n )/(2*sqrt(2)); %e A119813 A001333(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n )/2. %o A119813 (PARI) {a(n)=if(n==1,0,if(n==2,1, 4^round(((1+sqrt(2))^(n-2)+(1-sqrt(2))^(n-2))/(2*sqrt(2))) +if(n==3,2,2^round(((1+sqrt(2))^(n-3)-(1-sqrt(2))^(n-3))/2))))} %Y A119813 Cf. A119812 (constant), A119814 (convergents); A119809 (dual constant). %K A119813 cofr,nonn %O A119813 1,3 %A A119813 _Paul D. Hanna_, May 26 2006