This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119814 #3 Mar 30 2012 18:36:57 %S A119814 0,1,6,109,112494,1887350536045,543991754934632523092182415214, %T A119814 758213844806172103575972149363453352380811718063209070444420739586832237 %N A119814 Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n). %C A119814 The number of digits in these numerators are (beginning at n=2): [1,1,3,6,13,30,72,174,420,1013,2444,5901,14245,34391,83027,...]. %e A119814 c = 0.858267656461002055792260308433375148664905190083506778667684867.. %e A119814 Convergents begin: %e A119814 [0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..] %e A119814 where the denominators of the convergents equal [2^A001333(n-1)-1]: %e A119814 [1,1,7,127,131071,2199023255551,633825300114114700748351602687,...] %e A119814 and A001333 is numerators of continued fraction convergents to sqrt(2). %o A119814 (PARI) {a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,0,if(k==2,1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3,2,2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1,1])} %Y A119814 Cf. A119812 (constant), A119813 (continued fraction), A001333; A119809 (dual constant). %K A119814 frac,nonn %O A119814 1,3 %A A119814 _Paul D. Hanna_, May 26 2006