cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119814 Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).

This page as a plain text file.
%I A119814 #3 Mar 30 2012 18:36:57
%S A119814 0,1,6,109,112494,1887350536045,543991754934632523092182415214,
%T A119814 758213844806172103575972149363453352380811718063209070444420739586832237
%N A119814 Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
%C A119814 The number of digits in these numerators are (beginning at n=2): [1,1,3,6,13,30,72,174,420,1013,2444,5901,14245,34391,83027,...].
%e A119814 c = 0.858267656461002055792260308433375148664905190083506778667684867..
%e A119814 Convergents begin:
%e A119814 [0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..]
%e A119814 where the denominators of the convergents equal [2^A001333(n-1)-1]:
%e A119814 [1,1,7,127,131071,2199023255551,633825300114114700748351602687,...]
%e A119814 and A001333 is numerators of continued fraction convergents to sqrt(2).
%o A119814 (PARI) {a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,0,if(k==2,1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3,2,2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1,1])}
%Y A119814 Cf. A119812 (constant), A119813 (continued fraction), A001333; A119809 (dual constant).
%K A119814 frac,nonn
%O A119814 1,3
%A A119814 _Paul D. Hanna_, May 26 2006