cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119842 Number of alternating linear extensions of the divisor lattice of n.

This page as a plain text file.
%I A119842 #25 Feb 17 2024 23:43:59
%S A119842 1,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,0,1,0,1,1,1,0,1,1,0,0,
%T A119842 0,2,1,0,0,0,1,0,1,1,1,0,1,2,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,
%U A119842 0,0,1,6,1,0,1,1,0,0,1,2,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,2,1,0
%N A119842 Number of alternating linear extensions of the divisor lattice of n.
%C A119842 For prime powers there is only one solution. For integers with prime signature p1^2 * p2 there's exactly one solution, for p1^4 * p2 there are two and in general for p1^(2k) * p2 there are A000108(k) solutions. - _Mitch Harris_, Apr 27 2006
%H A119842 Alois P. Heinz, <a href="/A119842/b119842.txt">Table of n, a(n) for n = 1..10000</a>
%H A119842 T. Y. Chow, H. Eriksson, C. K. Fan, <a href="http://www.combinatorics.org/Volume_11/Abstracts/v11i2a3.html">Chess Tableaux</a>, The Electronic Journal of Combinatorics, vol. 11(2), 2004.
%H A119842 T. Y. Chow, H. Eriksson, C. K. Fan, <a href="http://www-math.mit.edu/~tchow/chesstalk.pdf">Chess Tableaux and Chess Problems</a>, slides for MIT Combinatorics Seminar, 20 October 2004.
%H A119842 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%e A119842 In other words, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it AND the divisors d_i, d_j, d_k, etc. are arranged so that values bigomega(d_i) (cf. A001222), bigomega(d_j), bigomega(d_k) are alternatively even and odd. E.g., a(12)=1, as of the five arrangements shown in A114717, here the only one allowed is 1,2,4,3,6,12, with A001222(1)=0, A001222(2)=1, A001222(4)=2, A001222(3)=1, A001222(6)=2, A001222(12)=3. a(36) = 2, as there are two solutions for 36: 1,2,4,3,6,12,9,18,36 and 1,3,9,2,6,18,4,12,36.
%p A119842 with(numtheory):
%p A119842 b:= proc(s, t) option remember; `if`(nops(s)<1, 1, add(
%p A119842       `if`(irem(bigomega(x), 2)=1-t and nops(select(y->
%p A119842       irem(y, x)=0, s))=1, b(s minus {x}, 1-t), 0), x=s))
%p A119842     end:
%p A119842 a:= proc(n) option remember; local l, m;
%p A119842       l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
%p A119842       m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
%p A119842       b(divisors(m) minus {1, m}, irem(bigomega(m), 2))
%p A119842     end:
%p A119842 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 26 2016
%t A119842 b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1-t && Length[Select[s, Mod[#, x] == 0&]] == 1, b[s ~Complement~ {x}, 1-t ], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[FactorInteger[n ], #1[[2]] > #2[[2]]&]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[ l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 27 2016, after _Alois P. Heinz_ *)
%Y A119842 a(n) <= A114717(n). Cf. A119844, A119846, A119847, A119849.
%K A119842 nonn
%O A119842 1,36
%A A119842 _Antti Karttunen_, Jun 04 2006