This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119855 #10 May 23 2018 16:26:03 %S A119855 1,2,9,44,249,1506,9687,64803,447666,3169566,22897260,168168164, %T A119855 1252391041,9437809359,71850420813,551876468717,4272100488830, %U A119855 33299732401378,261165251593743,2059638535690473,16324255856903830,129969379170062142,1039056925387672998 %N A119855 Number of equicolorable rooted trees on 2n nodes. %C A119855 For precise definition, recurrence and asymptotics see the Pippenger reference. %C A119855 An equicolorable tree is a tree which can be colored with two colors with adjacent nodes having different colors and there being an equal number of nodes of each color. - _Andrew Howroyd_, May 21 2018 %D A119855 N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115. %H A119855 Andrew Howroyd, <a href="/A119855/b119855.txt">Table of n, a(n) for n = 1..100</a> %o A119855 (PARI) \\ R is b.g.f of rooted trees x nodes, y in one part %o A119855 R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A}; %o A119855 seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff(r(x, y/x), 0) + O(y*y^n))} \\ _Andrew Howroyd_, May 23 2018 %Y A119855 Cf. A119856, A119857. %K A119855 nonn %O A119855 1,2 %A A119855 _N. J. A. Sloane_, Aug 04 2006 %E A119855 Terms a(8) and beyond from _Andrew Howroyd_, May 21 2018