This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119857 #12 Jan 10 2020 13:13:12 %S A119857 1,1,4,14,65,316,1742,10079,61680,391473,2565262,17237962,118341446, %T A119857 827194809,5872518213,42256545977,307681822711,2263881127801, %U A119857 16813356777456,125917441081662,950148951332802,7218810159035143,55187741462110393,424318236236124092 %N A119857 Number of equicolored (unrooted) trees on 2n nodes. %C A119857 For precise definition, recurrence and asymptotics see the Pippenger reference. %H A119857 Andrew Howroyd, <a href="/A119857/b119857.txt">Table of n, a(n) for n = 1..100</a> %H A119857 N. Pippenger, <a href="http://dx.doi.org/10.1137/S0895480100368463">Enumeration of equicolorable trees</a>, SIAM J. Discrete Math., 14 (2001), 93-115. %o A119857 (PARI) \\ R is b.g.f of rooted trees x nodes, y in one part %o A119857 R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A}; %o A119857 seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n))} \\ _Andrew Howroyd_, May 23 2018 %Y A119857 Main diagonal of A329054. %Y A119857 Cf. A119855, A119856. %K A119857 nonn %O A119857 1,3 %A A119857 _N. J. A. Sloane_, Aug 04 2006 %E A119857 Terms a(8) and beyond from _Andrew Howroyd_, May 21 2018