This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119874 #9 Sep 03 2017 11:51:43 %S A119874 6,14,38,38,68,92,116,116,164,188,236,236,266,298,370,370,418,466,490, %T A119874 490,586,610,682,682,736,784,856,856,904,976,1048,1048,1144,1168,1264, %U A119874 1264,1312,1368,1464,1464,1566,1638,1686,1686,1830,1878,1926,1926,1974 %N A119874 Sizes of successive clusters in f.c.c. lattice centered at an octahedral hole. %D A119874 N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534. %H A119874 N. J. A. Sloane, <a href="/A119874/b119874.txt">Table of n, a(n) for n = 0..9999</a> %H A119874 Wouter Meeussen, <a href="http://users.pandora.be/Wouter.Meeussen/ConvexHull3D.m">ConvexHull3D package & demo-file.</a> %F A119874 Partial sums of A005887, which has an explicit generating function. %p A119874 maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd): th4:=series(subs(q=-q,th3),q,maxd): %p A119874 t1:=series((th3^3-th4^3)/(2*q),q,maxd): t1:=series(subs(q=sqrt(q),t1),q,floor(maxd/2)): t2:=seriestolist(t1): t4:=0; for n from 1 to nops(t2) do t4:=t4+t2[n]; lprint(n-1, t4); od: # _N. J. A. Sloane_, Aug 09 2006 %Y A119874 Cf. A005887. %Y A119874 Cf. A119869, Properties of Waterman polyhedra of void center type: A119875 [vertices], A119876 [faces], A119877 [edges], A119878 [volume]. %K A119874 nonn %O A119874 0,1 %A A119874 _Hugo Pfoertner_, Jun 05 2006 %E A119874 Edited by _N. J. A. Sloane_, Aug 09 2006