This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119912 #12 Jan 23 2025 10:20:44 %S A119912 2,3,3,5,3,5,3,5,7,3,7,5,3,5,7,7,3,7,5,3,7,5,7,5,3,5,3,5,5,7,3,11,3,7, %T A119912 7,5,7,7,3,11,3,5,3,13,13,5,3,5,7,3,11,7,7,7,3,7,5,3,11,5,3,5,7,11,3, %U A119912 5,7,7,7,5,7,5,11,3,11,3,7,5,7,5,3,5,13,5,5,7,13,3,19,7,11,7,7,3,7,11,7,7,3 %N A119912 Scan A076368, discard any nonprimes. %C A119912 Primes that are one greater than the difference between consecutive primes. %H A119912 Cino Hilliard, <a href="http://groups.msn.com/First300billionprimes/primecounts.msnw">Frequency of primes</a>. %e A119912 The first 4 consecutive prime pairs are (2,3),(3,5),(5,7),(7,11). The differences + 1 are the primes 2,3,3,5, the first four entries in the sequence. %p A119912 P:=proc(n) local cont,i,j,k,w; for i from 1 by 1 to n do k:=ithprime(i); w:=ithprime(i+1); if isprime(w-k+1) then print(w-k+1); fi; od; end: P(10000); %t A119912 Select[Differences[Prime[Range[200]]]+1,PrimeQ] (* _Harvey P. Dale_, Jul 02 2017 *) %o A119912 (PARI) diffp1p2(n) = { local(p1,p2,y); for(x=1,n, p1=prime(x); p2=prime(x+1); y=(p2-p1)+1; if(isprime(y), print1(y",") ) ) } \\ _Cino Hilliard_, May 23 2007 %Y A119912 Cf. A076368. %K A119912 easy,nonn %O A119912 0,1 %A A119912 _Paolo P. Lava_ and _Giorgio Balzarotti_, Aug 02 2006 %E A119912 Edited by _N. J. A. Sloane_, Jul 02 2008 at the suggestion of R. J. Mathar