cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119915 Number of ternary words of length n and having exactly one run of 0's of odd length.

Original entry on oeis.org

0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761, 18004, 47525, 124536, 324317, 840092, 2166065, 5562272, 14232273, 36300196, 92321085, 234192584, 592695109, 1496810732, 3772761289, 9492450672, 23844342073, 59804611060, 149787196117
Offset: 0

Views

Author

Emeric Deutsch, May 29 2006

Keywords

Comments

Column 1 of A119914.

Examples

			a(3) = 13 because we have 000, 011, 012, 021, 022, 101, 102, 110, 120, 201, 202, 210 and 220 (for example, 001, 020 do not qualify).
		

Crossrefs

Programs

  • Maple
    g := z*(1-z^2)/(1-2*z-z^2)^2:
    gser := series(g,z=0,34):
    seq(coeff(gser,z,n), n=0..30);
  • Mathematica
    LinearRecurrence[ {4, -2, -4, -1}, {0, 1, 4, 13}, 28] (* Peter Luschny, Jan 14 2020 *)

Formula

a(n) = [z^n] z*(1 - z^2)/(1 - 2*z - z^2)^2.
a(n) = A006645(n+1) - A006645(n-1). - R. J. Mathar, Aug 07 2015
From Peter Luschny, Jan 14 2020: (Start)
a(n) = Sum_{k=0..n} A193737(n, k)*k.
Let h(k) = (1 + k)*exp((1 + k)*x)*(1 + x - 1/k)/4 then
a(n) = n!*[x^n](h(sqrt(2)) + h(-sqrt(2))). (End)