A119915 Number of ternary words of length n and having exactly one run of 0's of odd length.
0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761, 18004, 47525, 124536, 324317, 840092, 2166065, 5562272, 14232273, 36300196, 92321085, 234192584, 592695109, 1496810732, 3772761289, 9492450672, 23844342073, 59804611060, 149787196117
Offset: 0
Examples
a(3) = 13 because we have 000, 011, 012, 021, 022, 101, 102, 110, 120, 201, 202, 210 and 220 (for example, 001, 020 do not qualify).
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
Programs
-
Maple
g := z*(1-z^2)/(1-2*z-z^2)^2: gser := series(g,z=0,34): seq(coeff(gser,z,n), n=0..30);
-
Mathematica
LinearRecurrence[ {4, -2, -4, -1}, {0, 1, 4, 13}, 28] (* Peter Luschny, Jan 14 2020 *)
Formula
a(n) = [z^n] z*(1 - z^2)/(1 - 2*z - z^2)^2.
From Peter Luschny, Jan 14 2020: (Start)
a(n) = Sum_{k=0..n} A193737(n, k)*k.
Let h(k) = (1 + k)*exp((1 + k)*x)*(1 + x - 1/k)/4 then
a(n) = n!*[x^n](h(sqrt(2)) + h(-sqrt(2))). (End)
Comments