cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119916 Number of runs of 0's of odd length in all ternary words of length n.

This page as a plain text file.
%I A119916 #11 Feb 18 2016 10:40:00
%S A119916 0,1,4,17,64,233,820,2825,9568,31985,105796,346913,1129312,3653657,
%T A119916 11758132,37665881,120172096,382039649,1210689028,3825777329,
%U A119916 12058462720,37918780361,118986517684,372650082857,1165021837984
%N A119916 Number of runs of 0's of odd length in all ternary words of length n.
%C A119916 a(n)=Sum(k*A119914(n,k),k>=0).
%C A119916 Binomial transform of A179608. - _Johannes W. Meijer_, Aug 01 2010
%H A119916 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,-9).
%F A119916 G.f. = z(1-z)/[(1+z)(1-3z)^2].
%F A119916 a(n) = ((-1)^(n-1)+(3+4*n)*3^(n-1))/8. - _Johannes W. Meijer_, Aug 01 2010
%e A119916 a(2)=4 because in the nine ternary words of length 2, namely, 00, (0)1, (0)2, 1(0), 11, 12, 2(0), 21, 22, we have altogether 4 runs of 0's of odd length (shown between parentheses).
%p A119916 g:=z*(1-z)/(1-3*z)^2/(1+z): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=0..28);
%t A119916 LinearRecurrence[{5,-3,-9},{0,1,4},30] (* _Harvey P. Dale_, Feb 18 2016 *)
%Y A119916 Cf. A119914.
%K A119916 nonn,easy
%O A119916 0,3
%A A119916 _Emeric Deutsch_, May 29 2006