cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119918 Table read by antidiagonals: number of rationals in [0, 1) having exactly n preperiodic bits, then exactly k periodic bits (read up antidiagonals).

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 4, 4, 6, 12, 8, 8, 12, 12, 30, 16, 16, 24, 24, 30, 54, 32, 32, 48, 48, 60, 54, 126, 64, 64, 96, 96, 120, 108, 126, 240, 128, 128, 192, 192, 240, 216, 252, 240, 504, 256, 256, 384, 384, 480, 432, 504, 480, 504, 990, 512, 512, 768, 768, 960, 864, 1008
Offset: 1

Views

Author

Brad Chalfan (brad(AT)chalfan.net), May 28 2006

Keywords

Examples

			The binary expansion of 7/24 = 0.010(01)... has 3 preperiodic bits (to the right of the binary point) followed by 2 periodic (i.e., repeating) bits, while 1/2 = 0.1(0)... has one bit of each type. The preperiodic and periodic parts are both chosen to be as short as possible.
a(2, 2) = |{1/12 = 0.00(01)..., 5/12 = 0.01(10)..., 7/12 = 0.10(01)..., 11/12 = 0.11(10)...}| = 4
Table begins:
1 2 6 12
1 2 6 12
2 4 12 24
4 8 24 48
		

Crossrefs

Outer product of A011782 and A038199.

Programs

  • Mathematica
    Table[2^ Max[0,n-1](Plus@@((2^Divisors[k]-1)MoebiusMu[k/Divisors[k]])),{n, 0,1 0},{k,1,10}]

Formula

a(n, k) = 2^max{0, n-1} * sum_{d|k} (2^d - 1) * mu(k/d)