A119929 Decimal expansion of the value of Minkowski's question mark function at Khinchin's constant (A002210).
2, 7, 5, 5, 5, 0, 8, 4, 0, 9, 9, 8, 7, 6, 6, 9, 4, 4, 0, 0, 2, 5, 2, 9, 1, 9, 6, 9, 5, 1, 5, 5, 9, 1, 7, 6, 1, 2, 0, 8, 3, 8, 4, 0, 1, 4, 0, 2, 6, 3, 9, 4, 8, 8, 9, 7, 7, 5, 4, 3, 3, 1, 2, 4, 4, 1, 1, 2, 3, 1, 4, 2, 4, 5, 5, 5, 3, 5, 1, 7, 0, 2, 9, 2, 5, 6, 7, 1, 4, 2, 9, 3, 0, 8, 4, 3, 0, 4, 1, 3, 1, 4, 6, 2, 8
Offset: 1
Examples
2.755508409987669440025291969515591761208384014026394889775...
Crossrefs
Cf. A119928.
Programs
-
Mathematica
(*ensure variables are appropriately Cleared*) Off[ContinuedFraction::incomp]; mq[x_] := (If[Element[x, Rationals], cf = ContinuedFraction[x], cf = ContinuedFraction[x, 80(*arbitrary precision*)]]; IntegerPart[x] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]); RealDigits[mq[Khinchin],10] RealDigits[(cf = ContinuedFraction[Khinchin, 80(*arbitrary precision*)]; IntegerPart[Khinchin] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k,2, Length[cf]}]), 10]