cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119936 Least common multiple (LCM) of denominators of the rows of the triangle of rationals A119935/A119932.

This page as a plain text file.
%I A119936 #22 Nov 05 2019 06:39:42
%S A119936 1,8,108,576,18000,21600,1234800,5644800,57153600,63504000,8452382400,
%T A119936 9220780800,1688171284800,1818030614400,1947889944000,8310997094400,
%U A119936 2551995545299200,2702112930316800,1029655143835718400
%N A119936 Least common multiple (LCM) of denominators of the rows of the triangle of rationals A119935/A119932.
%C A119936 The triangle of rationals is the matrix cube of the matrix with elements a(i,j) = 1/i if j <= i, 0 if j > i.
%H A119936 Stephen Crowley, <a href="https://arxiv.org/abs/1207.1126">Two New Zeta Constants: Fractal String, Continued Fraction, and Hypergeometric Aspects of the Riemann Zeta Function</a>, arXiv:1207.1126 [math.NT], 2012.
%F A119936 A027447(i,j)= a(i)* A119935(i,j)/A119932(i,j) .
%F A119936 a(n) = lcm_{m=1..n} seq(A119932(n,m)), n >= 1.
%F A119936 a(n)/n^3 = A027451(n) = A002944(n)^2 (the second equation is a conjecture).
%F A119936 a(n)/n^3 = (A099946(n)*(n-1))^2, n >= 2 (from the conjecture).
%Y A119936 Distinct from A246498.
%K A119936 nonn,easy
%O A119936 1,2
%A A119936 _Wolfdieter Lang_, Jul 20 2006