This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119945 #53 Feb 01 2025 23:19:43 %S A119945 59,47,63,36,54,52,54,54,32,54,53,23,87,89,107,105,88,88,85,107,106, %T A119945 173,208,181,199,197,199,199,177,199,90,157,192,165,183,181,183,183, %U A119945 161,183,96,163,198,171,189,187,189,189,167,189,94,161,196,169,187,185,187,187,165 %N A119945 Sum of numerical values of letters in German names of the nonnegative numbers. %C A119945 Letters with umlauts are interpreted respectively as "ae" (which does not appear in this entry), "oe", "ue", and "sz" (sharp s) (as in the German name of 30 = "dreißig" -> "dreissig") as "ss" (not "sz"). %C A119945 According to the Reder reference only "zweihundertfuenf", 205 and "zweihundertsieben", 207, satisfy a(n)=n. %C A119945 This sequence is ambiguous for numbers above 100 because one can use, for instance, for 101 "hundertundeins" or "hunderteins. To avoid such ambiguities one should always stick to the shorter version. %C A119945 An alternate version of this sequence could ignore umlauts (i.e., take "a" for "ä" etc), or, more in-line with the German alphabet as it is usually listed in textbooks and reference works, taken as ä=27, ö=28, ü=29 (and then maybe ß=30, which could nonetheless remain considered as a ligature of "∫s"="ss"). - _M. F. Hasler_, Jun 23 2013 %C A119945 It appears that there is no canonical version of this sequence, because of the lack of agreement even on the number of letters in the German alphabet. - _N. J. A. Sloane_, Jun 11 2021 %D A119945 Christian Reder, Wörter und Zahlen, Springer Verlag, Komet, Wien, 2000, p. 337. %H A119945 <a href="/index/Ge#German">Index entries for sequences related to German names of numbers</a> %e A119945 "Null" for 0 in German has numerical values (a=1, b=2, ..., z=26) [14, 21, 12, 12] which sums up to a(0)=59. %e A119945 The numerical values for "zweihundertfuenf" are [26, 23, 5, 9, 8, 21, 14, 4, 5, 18, 20, 6, 21, 5, 14, 6] with sum 205. %e A119945 The numerical values for "zweihundertsieben" are [26, 23, 5, 9, 8, 21, 14, 4, 5, 18, 20, 19, 9, 5, 2, 5, 14] with sum 207. %e A119945 From _Omar E. Pol_, Jun 15 2021: (Start) %e A119945 ------------------------------------------------------------- %e A119945 n Name Calculation a(n) %e A119945 ------------------------------------------------------------- %e A119945 0 Null 14 + 21 + 12 + 12 = 59 %e A119945 1 Eins 5 + 9 + 14 + 19 = 47 %e A119945 2 Zwei 26 + 23 + 5 + 9 = 63 %e A119945 3 Drei 4 + 18 + 5 + 9 = 36 %e A119945 4 Vier 22 + 9 + 5 + 18 = 54 %e A119945 5 Fünf --> Fuenf 6 + 21 + 5 + 14 + 6 = 52 %e A119945 6 Sechs 19 + 5 + 3 + 8 + 19 = 54 %e A119945 7 Sieben 19 + 9 + 5 + 2 + 5 + 14 = 54 %e A119945 8 Acht 1 + 3 + 8 + 20 = 32 %e A119945 9 Neun 14 + 5 + 21 + 14 = 54 %e A119945 10 Zehn 26 + 5 + 8 + 14 = 53 %e A119945 11 Elf 5 + 12 + 6 = 23 %e A119945 12 Zwölf --> Zwoelf 26 + 23 + 15 + 5 + 12 + 6 = 87 %e A119945 ... (End) %e A119945 a(16) = 88 because "sechzehn" => [19, 5, 3, 8, 26, 5, 8, 14] with sum 88, as for a(17) with "siebzehn" => [19, 9, 5, 2, 26, 5, 8, 14]. - _M. F. Hasler_, Apr 08 2023 %o A119945 (PARI) %o A119945 G(n, eins="eins")={my(s(n, p, z, e="ein")=n=divrem(n, p); if(n[2], Str(G(n[1]*p), G(n[2])), Str(G(n[1], e), z))); if(n<20, ["null", eins, "zwei", "drei", "vier", "fuenf", "sechs", "sieben", "acht", "neun", "zehn", "elf", "zwoelf", "dreizehn", "vierzehn", "fuenfzehn", "sechzehn", "siebzehn", "achtzehn", "neunzehn"][n+1], n<100 && n%10, Str(G(n%10, "ein"), "und", G(n\10*10)), n<100, ["zwanzig", "dreissig", "vierzig", "fuenfzig", "sechzig", "siebzig", "achtzig", "neunzig"][n\10-1], n<1000, s(n, 100, "hundert"), n<10^6, s(n, 1000, "tausend"), n<10^9, s(n, 10^6, if(n\10^6>1, " Millionen ", "e Million ")), n<10^12, s(n, 10^9, if(n\10^9>1, " Milliarden ", "e Milliarde ")))} %o A119945 \\ extension to Billion, Billiarde, Trillion, Trilliarde, ... is obvious. See A007208 for a variant. %o A119945 apply( {A119945(n)=vecsum([t%32|t<-Vecsmall(G(n)),t>64])}, [0..99]) %o A119945 \\ _M. F. Hasler_, Apr 08 2023 %Y A119945 For analogs in other languages see A073327 (U.S. English), A169639 (French), A161406 (Spanish). %K A119945 nonn,easy,word %O A119945 0,1 %A A119945 _Wolfdieter Lang_, Jul 20 2006 %E A119945 Edited by _N. J. A. Sloane_, Jun 10 2021 %E A119945 Corrected and extended by _M. F. Hasler_, Apr 08 2023