This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119972 #25 Jan 19 2023 15:32:06 %S A119972 1,2,-3,4,5,-6,-7,8,9,10,-11,-12,13,-14,-15,16,17,18,-19,20,21,-22, %T A119972 -23,-24,25,26,-27,-28,29,-30,-31,32,33,34,-35,36,37,-38,-39,40,41,42, %U A119972 -43,-44,45,-46,-47,-48,49,50,-51,52,53,-54,-55,-56,57,58,-59,-60,61,-62,-63,64,65,66,-67,68,69,-70,-71,72,73,74,-75 %N A119972 a(n) = n * A034947(n). %C A119972 Previous name was: Flag n when the first difference of the decimal encoding of the Gray code is negative. (With "flag" meaning negate n when the difference is negative.) %C A119972 Merge A091072 with minus A091067 maintaining increasing absolute value. %F A119972 a(n) = n*Kronecker(-1, n) = n * A034947(n). - _Andrew Howroyd_, Aug 06 2018 %e A119972 A003188 begins 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 ... so %e A119972 A055975 begins 1 2 -1 4 1 -2 -1 8 1 2 -1 -4 1 -2 ... %e A119972 Sequence 1, 2,-3, 4, 5,-6,-7, 8, 9, 10,-11,-12, 13,-14, ... %e A119972 Negative terms are at positions 3,6,7,11,12,14,..., = A091067. %e A119972 Positive terms are the complement, which is A091072. %p A119972 isA091067 := proc(n) option remember ; if n mod 4 = 3 then RETURN(true) ; else if n mod 2 = 0 then if isA091067(n/2) then RETURN(true) ; fi ; fi ; RETURN(false) ; fi ; end: A119972 := proc(n) if isA091067(n) then -n ; else n ; fi ; end: for n from 1 to 180 do printf("%d, ",A119972(n)) ; od ; # _R. J. Mathar_, May 14 2007 %p A119972 # second Maple program: %p A119972 a:= n-> numtheory[jacobi](-1, n)*n: %p A119972 seq(a(n), n=1..75); # _Alois P. Heinz_, Jan 19 2023 %t A119972 a[n_] := n KroneckerSymbol[-1, n]; %t A119972 Array[a, 75] (* _Jean-François Alcover_, Apr 09 2020 *) %o A119972 (PARI) a(n) = n*kronecker(-1, n); \\ _Andrew Howroyd_, Aug 06 2018 %Y A119972 Cf. A034947, A003188, A055975, A091067, A091072. %K A119972 easy,sign,mult %O A119972 1,2 %A A119972 _Alford Arnold_, Jun 01 2006 %E A119972 More terms from _R. J. Mathar_, May 14 2007 %E A119972 Keyword:mult added by _Andrew Howroyd_, Aug 06 2018 %E A119972 New name using existing formula from _Joerg Arndt_, Jan 19 2023