A119973 Numbers of the form (4k+1)*2^j which are not a sum of two squares.
21, 33, 42, 57, 66, 69, 77, 84, 93, 105, 114, 129, 132, 133, 138, 141, 154, 161, 165, 168, 177, 186, 189, 201, 209, 210, 213, 217, 228, 237, 249, 253, 258, 264, 266, 273, 276, 282, 285, 297, 301, 308, 309, 321, 322, 329, 330, 336, 341, 345, 354, 357, 372
Offset: 1
Examples
42 is there because it's (4*5+1)*2^1 and is not a sum of two squares.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local w; w:= n/2^padic:-ordp(n,2); w mod 4 = 1 and select(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(w)[2]) <> [] end proc: select(filter, [$1..1000]); # Robert Israel, Oct 28 2018
-
Mathematica
okQ[n_] := EvenQ[(n/2^IntegerExponent[n, 2]-1)/2] && SquaresR[2, n] == 0; Select[Range[1000], okQ] (* Jean-François Alcover, Feb 09 2023 *)
Extensions
More terms from Don Reble, Jul 24 2006
Comments