This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120007 #35 Feb 16 2025 08:33:01 %S A120007 0,2,3,2,5,0,7,2,3,0,11,0,13,0,0,2,17,0,19,0,0,0,23,0,5,0,3,0,29,0,31, %T A120007 2,0,0,0,0,37,0,0,0,41,0,43,0,0,0,47,0,7,0,0,0,53,0,0,0,0,0,59,0,61,0, %U A120007 0,2,0,0,67,0,0,0,71,0,73,0,0,0,0,0,79,0,3,0,83,0,0,0,0,0,89,0,0,0,0,0,0,0 %N A120007 Mobius transform of sum of prime factors of n with multiplicity (A001414). %C A120007 Same as A014963, except this function is zero when n is not a prime power, whereas A014963 is one. %C A120007 Moreover, this sequence, A014963, A297108 and A297109 partition the natural numbers to identical equivalence classes: For all i, j >= 1, a(i) = a(j) <=> A014963(i) = A014963(j) <=> A297108(i) = A297108(j) <=> A297109(i) = A297109(j). - _Antti Karttunen_, Feb 01 2021 %H A120007 Reinhard Zumkeller, <a href="/A120007/b120007.txt">Table of n, a(n) for n = 1..10000</a> %H A120007 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor.</a> %H A120007 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function.</a> %F A120007 If n is a prime power p^k, k>0, a(n) = p; otherwise a(n) = 0. %F A120007 Dirichlet g.f. sum_{p prime} p/(p^s-1) = sum_{k>0} primezeta(ks-1). %F A120007 a(n) = A010055(n) * A007947(n). - _Reinhard Zumkeller_, Mar 26 2010 %F A120007 a(n) = A061397(A007947(n)). - _Reinhard Zumkeller_, Sep 19 2011, corrected by _Antti Karttunen_, Jan 31 2021 %F A120007 a(n) = Sum_{k=2..n} k*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - _Anthony Browne_, Jun 17 2016 %F A120007 If A297109(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A297109(n)). - _Antti Karttunen_, Feb 01 2021 %t A120007 Table[If[Length@ # == 1, #[[1, 1]], 0] &@ FactorInteger@ n, {n, 96}] /. 1 -> 0 (* _Michael De Vlieger_, Jun 19 2016 *) %t A120007 Table[If[PrimePowerQ[n],FactorInteger[n][[1,1]],0],{n,100}] (* _Harvey P. Dale_, Jan 25 2020 *) %o A120007 (Haskell) %o A120007 a120007 1 = 0 %o A120007 a120007 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf %o A120007 | otherwise = 0 %o A120007 where spf = a020639 n %o A120007 -- _Reinhard Zumkeller_, Sep 19 2011 %o A120007 (PARI) A120007(n) = { my(v); if(isprimepower(n, &v), v, 0); }; \\ _Antti Karttunen_, Jan 31 2021 %Y A120007 Cf. A000040, A001414, A007947, A014963, A010051, A010055, A061397, A070939, A140508 (Möbius transform of this sequence), A297108, A297109. %K A120007 nonn %O A120007 1,2 %A A120007 _Franklin T. Adams-Watters_, Jun 02 2006