This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120027 #24 Feb 14 2022 03:56:10 %S A120027 1,3,5,9,15,25,27,45,75,125,81,135,225,375,625,243,405,675,1125,1875, %T A120027 3125,729,1215,2025,3375,5625,9375,15625,2187,3645,6075,10125,16875, %U A120027 28125,46875,78125,6561,10935,18225,30375,50625,84375,140625,234375 %N A120027 Triangle, generated from (3^(n-k) * 5^k) table. %C A120027 Row 1 of the array (3, 15, 75, 375, ...) = A005053, (3 * 5^n), deleting the "1". %H A120027 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv preprint arXiv:1212.2732 [math.CO], 2012. %F A120027 Antidiagonals of the (3^i * 5^j) multiplication table, as an array. %F A120027 From _Boris Putievskiy_, Jan 09 2013: (Start) %F A120027 T(n,k) = 3^(k-1)*5^(n-1) n, k >0 read by antidiagonals. %F A120027 a(n) = 3^(A004736(n)-1) * 5^(A002260(n)-1), n > 0, or %F A120027 a(n) = 3^(j-1) * 5^(i-1), n > 0, %F A120027 where i = n - t*(t+1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1+sqrt(8*n-7))/2). (End) %F A120027 G.f.: 1/((1 - 3*x)(1 - 5*x*y)). - _Ilya Gutkovskiy_, Jun 03 2017 %e A120027 First few rows of the array: %e A120027 1, 5, 25, 125, ... %e A120027 3, 15, 75, 375, ... %e A120027 9, 45, 225, 1125, ... %e A120027 First few rows of the triangle are: %e A120027 1; %e A120027 3, 5; %e A120027 9, 15, 25; %e A120027 27, 45, 75, 125; %e A120027 ... %e A120027 Example: a(17) = 675 = (3,2) in the array, = 3^3 * 5^2. %t A120027 Table[3^(n - k)*5^k, {n, 0, 8}, {k, 0, n}] // Flatten (* _Robert G. Wilson v_, Jun 06 2006 *) %Y A120027 Cf. A005053, A036561, A036565, A036566. %K A120027 nonn,tabl %O A120027 0,2 %A A120027 _Gary W. Adamson_, Jun 04 2006 %E A120027 More terms from _Robert G. Wilson v_, Jun 06 2006