cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120027 Triangle, generated from (3^(n-k) * 5^k) table.

This page as a plain text file.
%I A120027 #24 Feb 14 2022 03:56:10
%S A120027 1,3,5,9,15,25,27,45,75,125,81,135,225,375,625,243,405,675,1125,1875,
%T A120027 3125,729,1215,2025,3375,5625,9375,15625,2187,3645,6075,10125,16875,
%U A120027 28125,46875,78125,6561,10935,18225,30375,50625,84375,140625,234375
%N A120027 Triangle, generated from (3^(n-k) * 5^k) table.
%C A120027 Row 1 of the array (3, 15, 75, 375, ...) = A005053, (3 * 5^n), deleting the "1".
%H A120027 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
%F A120027 Antidiagonals of the (3^i * 5^j) multiplication table, as an array.
%F A120027 From _Boris Putievskiy_, Jan 09 2013: (Start)
%F A120027 T(n,k) = 3^(k-1)*5^(n-1) n, k >0 read by antidiagonals.
%F A120027 a(n) = 3^(A004736(n)-1) * 5^(A002260(n)-1), n > 0, or
%F A120027 a(n) = 3^(j-1) * 5^(i-1), n > 0,
%F A120027 where i = n - t*(t+1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1+sqrt(8*n-7))/2). (End)
%F A120027 G.f.: 1/((1 - 3*x)(1 - 5*x*y)). - _Ilya Gutkovskiy_, Jun 03 2017
%e A120027 First few rows of the array:
%e A120027   1,  5,  25,  125, ...
%e A120027   3, 15,  75,  375, ...
%e A120027   9, 45, 225, 1125, ...
%e A120027 First few rows of the triangle are:
%e A120027    1;
%e A120027    3,  5;
%e A120027    9, 15, 25;
%e A120027   27, 45, 75, 125;
%e A120027   ...
%e A120027 Example: a(17) = 675 = (3,2) in the array, = 3^3 * 5^2.
%t A120027 Table[3^(n - k)*5^k, {n, 0, 8}, {k, 0, n}] // Flatten (* _Robert G. Wilson v_, Jun 06 2006 *)
%Y A120027 Cf. A005053, A036561, A036565, A036566.
%K A120027 nonn,tabl
%O A120027 0,2
%A A120027 _Gary W. Adamson_, Jun 04 2006
%E A120027 More terms from _Robert G. Wilson v_, Jun 06 2006