cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120028 Continued fraction expansion of the value of Minkowski's question mark function at Levy's constant (Exp[Pi^2/(12*Log[2])], A086702).

This page as a plain text file.
%I A120028 #4 Jul 10 2011 18:41:28
%S A120028 3,6,10,2,8388607,1,1,10,5,1,19802808501020211999048785114,1,5,1,5,2,
%T A120028 2,10,4,1,142,3,1,1,1,1,1,2,13,16,1,83,2,4,1,15,1,62,1,20,1,2,1,1,1,9,
%U A120028 1,1,1,13,2,3,1,4,1,5,1,1,1,5,7,1,27,1,2,4,3,1,3,3,1,7,2,1,1,91,11,1,2,4,4
%N A120028 Continued fraction expansion of the value of Minkowski's question mark function at Levy's constant (Exp[Pi^2/(12*Log[2])], A086702).
%C A120028 a[92] has over 150 decimal digits, making 750332738256083509758042341909438953923620244270237443771885409340366143805720089/2^267 an excellent approximation to the constant.
%H A120028 <a href="/index/Me#MinkowskiQ">Index entries for Minkowski's question mark function</a>
%H A120028 <a href="/index/Me#MinkowskiQ">Index entries for sequences related to Minkowski's question mark function</a>
%t A120028 ContinuedFraction[cf = ContinuedFraction[Exp[Pi^2/(12*Log[2])], 50(*arbitrary precision*)]; IntegerPart[Exp[Pi^2/(12*Log[2])]] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]]
%Y A120028 Cf. A120029.
%K A120028 cofr,nonn
%O A120028 0,1
%A A120028 Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 04 2006