cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120070 Triangle of numbers used to compute the frequencies of the spectral lines of the hydrogen atom.

This page as a plain text file.
%I A120070 #50 Aug 28 2019 15:33:48
%S A120070 3,8,5,15,12,7,24,21,16,9,35,32,27,20,11,48,45,40,33,24,13,63,60,55,
%T A120070 48,39,28,15,80,77,72,65,56,45,32,17,99,96,91,84,75,64,51,36,19,120,
%U A120070 117,112,105,96,85,72,57,40,21
%N A120070 Triangle of numbers used to compute the frequencies of the spectral lines of the hydrogen atom.
%C A120070 The rationals r(m,n):=a(m,n)/(m^2*n^2), for m-1 >= n, else 0, are used to compute the frequencies of the spectral lines of the H-atom according to quantum theory: nu(m,n) = r(m,n)*c*R' with c*R'=3.287*10^15 s^(-1) an approximation for the Rydberg frequency. R' indicates, that the correction factor 1/(1+m_e/m_p), approximately 0.9995, with the masses for the electron and proton, has been used for the Rydberg constant R_infinity. c:=299792458 m/s is, per definition, the velocity of light in vacuo (see A003678).
%C A120070 In order to compute the wave length of the spectral lines approximately one uses the reciprocal rationals: lambda(m,n):= c/nu(m,n) = (1/r(m,n))*91.1961 nm. 1 nm = 10^{-9} m. For the corresponding energies one uses approximately E(m,n) = r(m,n)*13.599 eV (electron Volts).
%C A120070 The author was inspired by Dewdney's book to compile this table and related ones.
%C A120070 For the approximate frequencies, energies and wavelengths of the first members of the Lyman (n=1, m>=2), Balmer (n=2, m>=3), Paschen (n=3, m>=4), Brackett (n=4, m>=5) and Pfund (n=5, m>=6) series see the W. Lang link under A120072.
%C A120070 Frenicle wrote this as a(n+1) = A140978(n) - A133819(n-1). - _Paul Curtz_, Aug 19 2008
%C A120070 This triangle also has an interpretation related to particle spin. For proper offset such that T(0,0) = 3, then, where h-bar = h/(2*Pi) = A003676/A019692 (= The Dirac constant, also known as Planck's reduced constant) and Spin(n/2) = h-bar/2*sqrt(n(n+2)), it follows that: h-bar/2*sqrt(T(r,k)) = h-bar/2*sqrt(T(r,0) - T(k-1,0)) = sqrt((Spin((r+1)/2))^2 - (Spin(k/2))^2). For example, for r = k = 4, then h-bar/2*sqrt(11) = h-bar/2*sqrt(T(4,4)) = h-bar/2*sqrt(T(4,0) - T(3,0)) = sqrt(h-bar^2/4*T(4,0) - h-bar^2/4*T(3,0)) = sqrt(h-bar^2/4*35 - h-bar^2/4*24) = sqrt((Spin((4+1)/2))^2 - (Spin(4/2))^2); 35 = 5*(5+2) & 24 = 4*(4+2). - _Raphie Frank_, Dec 30 2012
%D A120070 A. K. Dewdney, Reise in das Innere der Mathematik, Birkhäuser, Basel, 2000, pp. 148-154; engl.: A Mathematical Mystery Tour, John Wiley & Sons, N.Y., 1999.
%H A120070 Stanislav Sykora, <a href="/A120070/b120070.txt">Table of n, a(n) for n = 2..79801</a>
%H A120070 W. Lang: <a href="/A120070/a120070.txt">First ten rows and more.</a>
%H A120070 M. de Frenicle, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k5493994j/">Methode pour trouver la solutions des problemes par les exclusions</a>, in: Divers ouvrages des mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, page 11.
%H A120070 Wikipedia, <a href="http://en.wikipedia.org/wiki/Spin_(physics)">Spin (physics)</a>
%H A120070 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hydrogen_spectral_series">Hydrogen spectral series</a>
%F A120070 a(m,n) = m^2 - n^2 for m-1 >= n, otherwise 0.
%F A120070 G.f. for column n=1,2,...: x^(n+1)*((2*n+1)- (2*n-1)*x)/(1-x)^3.
%F A120070 G.f. for rationals r(m,n), n=1,2,...,10 see W. Lang link.
%F A120070 T(r,k) = T(r,0) - T(k-1,0), T(0,0) = 3. - _Raphie Frank_, Dec 27 2012
%e A120070 Triangle begins
%e A120070   [ 3];
%e A120070   [ 8, 5];
%e A120070   [15, 12,  7];
%e A120070   [24, 21, 16,  9];
%e A120070   [35, 32, 27, 20, 11];
%e A120070   ...
%t A120070 ColumnForm[Table[n^2 - k^2, {n, 2, 13}, {k, n - 1}], Center] (* _Alonso del Arte_, Oct 26 2011 *)
%o A120070 (PARI) nmax=400;a=vector(1+nmax*(nmax-1)\2);idx=1;for(n=2,nmax,for(k=1,n-1,a[idx]=n*n-k*k;idx++)) \\ _Stanislav Sykora_, Feb 17 2014
%o A120070 (PARI) T(n,k)=n^2-k^2;
%o A120070 for (n=1,10,for(k=1,n-1, print1(T(n,k),", ")));
%o A120070 \\ _Joerg Arndt_, Feb 23 2014
%Y A120070 Row sums give A016061(n-1), n>=2.
%Y A120070 Cf. A120072/A120073 numerator and denominator tables for rationals r(m, n).
%K A120070 nonn,easy,tabl
%O A120070 2,1
%A A120070 _Wolfdieter Lang_, Jul 20 2006