This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120072 #34 Apr 25 2023 20:18:33 %S A120072 3,8,5,15,3,7,24,21,16,9,35,2,1,5,11,48,45,40,33,24,13,63,15,55,3,39, %T A120072 7,15,80,77,8,65,56,5,32,17,99,6,91,21,3,4,51,9,19,120,117,112,105,96, %U A120072 85,72,57,40,21,143,35,5,1,119,1,95,5,7,11,23 %N A120072 Numerator triangle for hydrogen spectrum rationals. %C A120072 Frequencies or energies of the spectral lines of the hydrogen (H) atom are given, according to quantum theory, by r(m,n)*3.287*PHz (1 Peta Hertz= 10^15 s^{-1}) or r(m,n)*13.599 eV (electron Volts), respectively. The wave lengths are lambda(m,n) = (1/r(m,n))* 91.196 nm (all decimals rounded). See the W. Lang link for more details. %C A120072 The spectral series for n=1,2,...,7, m>=n+1, are named after Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, respectively. %C A120072 The corresponding denominator triangle is A120073. %C A120072 The rationals are r(m,n):= a(m,n)/A120073(m,n) = A120070(m,n)/(m^2*n^2) = 1/ n^2 - 1/m^2 and they are given in lowest terms. %H A120072 G. C. Greubel, <a href="/A120072/b120072.txt">Rows n = 2..50 of the triangle, flattened</a> %H A120072 Wolfdieter Lang, <a href="/A120072/a120072.txt">First ten rows, rationals and more</a>. %H A120072 T. Lyman, <a href="http://adsabs.harvard.edu/full/1906ApJ....23..181L">The Spectrum of Hydrogen in the Region of Extremely Short Wave-Lengths</a>, The Astrophysical Journal, 23 (April 1906), 181-210. - _Paul Curtz_, May 30 2017 %F A120072 a(m,n) = numerator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1. %F A120072 The g.f.s for the columns n=1,..,10 of triangle r(m,n) = a(m, n) / A120073(m, n), m >= 2, 1 <= n <= m-1, are given in the W. Lang link. %e A120072 For the rational triangle see W. Lang link. %e A120072 Numerator triangle begins as: %e A120072 3; %e A120072 8, 5; %e A120072 15, 3, 7; %e A120072 24, 21, 16, 9; %e A120072 35, 2, 1, 5, 11; %e A120072 48, 45, 40, 33, 24, 13; %e A120072 63, 15, 55, 3, 39, 7, 15; %e A120072 80, 77, 8, 65, 56, 5, 32, 17; %e A120072 99, 6, 91, 21, 3, 4, 51, 9, 19; %t A120072 Table[1/n^2 - 1/m^2, {m,2,12}, {n,m-1}]//Flatten//Numerator (* _Jean-François Alcover_, Sep 16 2013 *) %o A120072 (Magma) [Numerator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // _G. C. Greubel_, Apr 24 2023 %o A120072 (SageMath) %o A120072 def A120072(n,k): return numerator(1/k^2 - 1/n^2) %o A120072 flatten([[A120072(n,k) for k in range(1,n)] for n in range(2,19)]) # _G. C. Greubel_, Apr 24 2023 %Y A120072 Row sums give A120074. %Y A120072 Row sums of r(m, n) triangle give A120076(m)/A120077(m), m>=2. %Y A120072 Cf. A120070, A120073, A120075, A126252. %K A120072 nonn,easy,tabl,frac %O A120072 2,1 %A A120072 _Wolfdieter Lang_, Jul 20 2006