cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120076 Numerators of row sums of rational triangle A120072/A120073.

This page as a plain text file.
%I A120076 #13 Apr 25 2023 06:17:48
%S A120076 3,37,169,4549,4769,241481,989549,9072541,1841321,225467009,227698469,
%T A120076 38801207261,39076419341,196577627041,790503882349,229526961468061,
%U A120076 230480866420061,83512167402400421,3351610394325821
%N A120076 Numerators of row sums of rational triangle A120072/A120073.
%C A120076 The corresponding denominators are given by A120077.
%C A120076 See the W. Lang link under A120072 for more details.
%H A120076 G. C. Greubel, <a href="/A120076/b120076.txt">Table of n, a(n) for n = 2..1000</a>
%F A120076 a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
%F A120076 The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.
%F A120076 O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).
%e A120076 The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
%t A120076 Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* _G. C. Greubel_, Apr 24 2023 *)
%o A120076 (Magma)
%o A120076 A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;
%o A120076 [A120076(n): n in [2..30]]; // _G. C. Greubel_, Apr 24 2023
%o A120076 (SageMath)
%o A120076 def A120076(n): return numerator(harmonic_number(n,2) - 1/n)
%o A120076 [A120076(n) for n in range(2,31)] # _G. C. Greubel_, Apr 24 2023
%Y A120076 Cf. A120070, A120072, A120073, A120074, A120075, A120077.
%K A120076 nonn,easy,frac
%O A120076 2,1
%A A120076 _Wolfdieter Lang_, Jul 20 2006