cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.

This page as a plain text file.
%I A120078 #23 May 03 2023 09:13:01
%S A120078 1,4,-3,36,-27,-5,144,-108,-20,-7,3600,-2700,-500,-175,-81,3600,-2700,
%T A120078 -500,-175,-81,-44,176400,-132300,-24500,-8575,-3969,-2156,-1300,
%U A120078 705600,-529200,-98000,-34300,-15876,-8624,-5200,-3375,6350400,-4762800,-882000,-308700,-142884,-77616,-46800,-30375,-20825
%N A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.
%C A120078 The row polynomials P(n,x) = Sum_{k=1..n-1} a(n,k)*x^k, n >= 1, appear in the numerator of the o.g.f. for column n of the triangle of rationals A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1. P(n,x) has degree n-1.
%C A120078 See the W. Lang link under A120072 for the precise form of the o.g.f.s: G(x,n) = -dilog(1-x) + x*P(n,4)/*(A(n)*(n^2)*(1-x)), with A(n) = [1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, ...] = conjectured to be A027451(n), n >= 1.
%H A120078 G. C. Greubel, <a href="/A120078/b120078.txt">Rows n = 1..50 of the triangle, flattened</a>
%H A120078 Wolfdieter Lang, <a href="/A120078/a120078.txt">First ten rows</a>
%F A120078 T(n, k) = A051418(n) * (1 if k = 1 otherwise 1/k^2 - 1/(k-1)^2). - _G. C. Greubel_, Apr 26 2023
%e A120078 For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
%e A120078 Triangle begins:
%e A120078        1;
%e A120078        4,      -3;
%e A120078       36,     -27,     -5;
%e A120078      144,    -108,    -20,    -7;
%e A120078     3600,   -2700,   -500,  -175,   -81;
%e A120078     3600,   -2700,   -500,  -175,   -81,   -44;
%e A120078   176400, -132300, -24500, -8575, -3969, -2156, -1300;
%t A120078 Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 26 2023 *)
%o A120078 (Magma)
%o A120078 f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
%o A120078 A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
%o A120078 [A120078(n,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 26 2023
%o A120078 (SageMath)
%o A120078 def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
%o A120078 def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
%o A120078 flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Apr 26 2023
%Y A120078 Row sums (unsigned) give A120079.
%Y A120078 Signed row sums conjectured to coincide with A027451.
%Y A120078 Cf. A027451, A051418, A120072, A120073, A120079.
%K A120078 sign,tabl
%O A120078 1,2
%A A120078 _Wolfdieter Lang_, Jul 20 2006