This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120078 #23 May 03 2023 09:13:01 %S A120078 1,4,-3,36,-27,-5,144,-108,-20,-7,3600,-2700,-500,-175,-81,3600,-2700, %T A120078 -500,-175,-81,-44,176400,-132300,-24500,-8575,-3969,-2156,-1300, %U A120078 705600,-529200,-98000,-34300,-15876,-8624,-5200,-3375,6350400,-4762800,-882000,-308700,-142884,-77616,-46800,-30375,-20825 %N A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum. %C A120078 The row polynomials P(n,x) = Sum_{k=1..n-1} a(n,k)*x^k, n >= 1, appear in the numerator of the o.g.f. for column n of the triangle of rationals A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1. P(n,x) has degree n-1. %C A120078 See the W. Lang link under A120072 for the precise form of the o.g.f.s: G(x,n) = -dilog(1-x) + x*P(n,4)/*(A(n)*(n^2)*(1-x)), with A(n) = [1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, ...] = conjectured to be A027451(n), n >= 1. %H A120078 G. C. Greubel, <a href="/A120078/b120078.txt">Rows n = 1..50 of the triangle, flattened</a> %H A120078 Wolfdieter Lang, <a href="/A120078/a120078.txt">First ten rows</a> %F A120078 T(n, k) = A051418(n) * (1 if k = 1 otherwise 1/k^2 - 1/(k-1)^2). - _G. C. Greubel_, Apr 26 2023 %e A120078 For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)). %e A120078 Triangle begins: %e A120078 1; %e A120078 4, -3; %e A120078 36, -27, -5; %e A120078 144, -108, -20, -7; %e A120078 3600, -2700, -500, -175, -81; %e A120078 3600, -2700, -500, -175, -81, -44; %e A120078 176400, -132300, -24500, -8575, -3969, -2156, -1300; %t A120078 Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 26 2023 *) %o A120078 (Magma) %o A120078 f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >; %o A120078 A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >; %o A120078 [A120078(n,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 26 2023 %o A120078 (SageMath) %o A120078 def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2 %o A120078 def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k) %o A120078 flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Apr 26 2023 %Y A120078 Row sums (unsigned) give A120079. %Y A120078 Signed row sums conjectured to coincide with A027451. %Y A120078 Cf. A027451, A051418, A120072, A120073, A120079. %K A120078 sign,tabl %O A120078 1,2 %A A120078 _Wolfdieter Lang_, Jul 20 2006