This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120083 #15 May 01 2023 10:03:15 %S A120083 1,4,36,1,3600,1,211680,1,10886400,1,526901760,1,16999766784000,1, %T A120083 1120863744000,1,181400588328960000,1,97072790126247936000,1, %U A120083 16860010916664115200000,1,324325300906011525120000,1 %N A120083 Denominators of expansion for Debye function for n=1: D(1,x). %C A120083 Numerators are found under A120082. %H A120083 G. C. Greubel, <a href="/A120083/b120083.txt">Table of n, a(n) for n = 0..447</a> %F A120083 a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/4 + Sum_{k >= 0}(B(2*k)/((2*k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers). %F A120083 a(n) = denominator(B(n)/(n+1)!), n >= 0. See the comment on the e.g.f. D(1,x) in A120082. - _Wolfdieter Lang_, Jul 15 2013 %t A120083 Table[Denominator[BernoulliB[n]/(n+1)!], {n,0,50}] (* _G. C. Greubel_, May 01 2023 *) %o A120083 (Magma) [Denominator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // _G. C. Greubel_, May 01 2023 %o A120083 (SageMath) %o A120083 def A120083(n): return denominator(bernoulli(n)/factorial(n+1)) %o A120083 [A120083(n) for n in range(51)] # _G. C. Greubel_, May 01 2023 %Y A120083 Cf. A120082. %K A120083 nonn,easy,frac %O A120083 0,2 %A A120083 _Wolfdieter Lang_, Jul 20 2006