This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120105 #16 May 05 2023 01:43:39 %S A120105 1,6,1,30,5,1,420,70,14,1,1260,210,42,3,1,13860,2310,462,33,11,1, %T A120105 180180,30030,6006,429,143,13,1,360360,60060,12012,858,286,26,2,1, %U A120105 6126120,1021020,204204,14586,4862,442,34,17,1,116396280,19399380,3879876,277134,92378,8398,646,323,19,1 %N A120105 Number triangle T(n,k) = lcm(1,..,2*n+2)/lcm(1,..,2*k+2). %H A120105 Muniru A Asiru, <a href="/A120105/b120105.txt">Rows n=0..100 of triangle, flattened</a> %F A120105 Number triangle T(n,k) = [k<=n] + lcm(1,..,2n+2)/lcm(1,..,2k+2). %F A120105 From _G. C. Greubel_, May 04 2023: (Start) %F A120105 Sum_{k=0..n} T(n, k) = A120106(n). %F A120105 Sum_{k=0..floor(n/2)} T(n-k, k) = A120107(n). (End) %e A120105 Triangle begins: %e A120105 1; %e A120105 6, 1; %e A120105 30, 5, 1; %e A120105 420, 70, 14, 1; %e A120105 1260, 210, 42, 3, 1; %e A120105 13860, 2310, 462, 33, 11, 1; %e A120105 180180, 30030, 6006, 429, 143, 13, 1; %p A120105 T:= (n,k)-> ilcm(seq(q,q=1..2*n+2))/ilcm(seq(r,r=1..2*k+2)): %p A120105 seq(seq(T(n,k),k=0..n),n=0..9); # _Muniru A Asiru_, Feb 26 2019 %t A120105 T[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]); %t A120105 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 04 2023 *) %o A120105 (GAP) Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/Lcm(List([1..2*k+2],i->i))))); # _Muniru A Asiru_, Feb 26 2019 %o A120105 (Magma) [Lcm([1..2*n+2])/Lcm([1..2*k+2]): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 04 2023 %o A120105 (SageMath) %o A120105 def f(n): return lcm(range(1,2*n+3)) %o A120105 def A120105(n,k): %o A120105 return f(n)//f(k) %o A120105 flatten([[A120105(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, May 04 2023 %Y A120105 First column is A119634. Second column is A051538. Inverse is A120111. %Y A120105 Cf. A120106, A120107. %K A120105 easy,nonn,tabl %O A120105 0,2 %A A120105 _Paul Barry_, Jun 09 2006