This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120109 #23 May 05 2023 01:44:09 %S A120109 1,3,10,21,106,107,750,1501,4504,4505,49556,49557,644242,644243, %T A120109 644244,1288489,21904314,21904315,416181986,416181987,416181988, %U A120109 416181989,9572185748,9572185749,47860928746,47860928747,143582786242 %N A120109 Row sums of number triangle A120108. %C A120109 It appears that the indices k such that a(k) = a(k-1) + 1 are A080765. - _Michel Marcus_, Mar 04 2019 %H A120109 Muniru A Asiru, <a href="/A120109/b120109.txt">Table of n, a(n) for n = 0..1000</a> %F A120109 a(n) = Sum_{k=0..n} lcm(1,...,n+1)/lcm(1,...,k+1). %t A120109 A120108[n_, k_]:= LCM@@Range[n+1]/(LCM@@Range[k+1]); %t A120109 A120109[n_]:= Sum[A120108[n, k], {k,0,n}]; %t A120109 Table[A120109[n], {n,0,50}] (* _G. C. Greubel_, May 04 2023 *) %o A120109 (GAP) List([0..30],n->Sum([0..n],k->Lcm(List([1..n+1],i->i))/Lcm(List([1..k+1],i->i)))); # _Muniru A Asiru_, Mar 03 2019 %o A120109 (PARI) a(n) = lcm([1..n+1])*sum(k=0, n, 1/lcm([1..k+1])); \\ _Michel Marcus_, Mar 04 2019 %o A120109 (Magma) %o A120109 A120108:= func< n,k | Lcm([1..n+1])/Lcm([1..k+1]) >; %o A120109 [(&+[A120108(n,k): k in [0..n]]): n in [0..50]]; // _G. C. Greubel_, May 04 2023 %o A120109 (SageMath) %o A120109 def f(n): return lcm(range(1,n+2)) %o A120109 def A120109(n): %o A120109 return sum(f(n)//f(k) for k in range(n+1)) %o A120109 [A120109(n) for n in range(51)] # _G. C. Greubel_, May 04 2023 %Y A120109 Cf. A080765, A120108, A120110. %K A120109 easy,nonn %O A120109 0,2 %A A120109 _Paul Barry_, Jun 09 2006