This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120111 #19 Mar 31 2024 17:27:32 %S A120111 1,-2,1,0,-3,1,0,0,-2,1,0,0,0,-5,1,0,0,0,0,-1,1,0,0,0,0,0,-7,1,0,0,0, %T A120111 0,0,0,-2,1,0,0,0,0,0,0,0,-3,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0, %U A120111 -11,1 %N A120111 Bi-diagonal inverse matrix of A120108. %C A120111 Subdiagonal is -lcm(1,...,n+2)/lcm(1,...,n+1) or -A014963(n+1). %C A120111 Row sums are A120112. %H A120111 G. C. Greubel, <a href="/A120111/b120111.txt">Rows n = 0..100 of the triangle, flattened</a> %e A120111 Triangle begins %e A120111 1; %e A120111 -2, 1; %e A120111 0, -3, 1; %e A120111 0, 0, -2, 1; %e A120111 0, 0, 0, -5, 1; %e A120111 0, 0, 0, 0, -1, 1; %e A120111 0, 0, 0, 0, 0, -7, 1; %e A120111 0, 0, 0, 0, 0, 0, -2, 1; %e A120111 0, 0, 0, 0, 0, 0, 0, -3, 1; %e A120111 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A120111 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1; %t A120111 T[n_, k_] := Switch[k, n, 1, n-1, -Exp[MangoldtLambda[n+1]], _, 0]; %t A120111 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _Jean-François Alcover_, Mar 01 2021 *) %t A120111 (* Second program *) %t A120111 A014963[n_]:= LCM@@Range[n]/(LCM@@Range[n-1]); %t A120111 A120111[n_, k_]:= If[k==n, 1, If[k==n-1, -A014963[n+1], 0]]; %t A120111 Table[A120111[n,k], {n,0,20}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 05 2023 *) %o A120111 (Magma) %o A120111 A014963:= func< n | Lcm([1..n])/Lcm([1..n-1]) >; %o A120111 A120111:= func< n,k | k eq n select 1 else k eq n-1 select -A014963(n+1) else 0 >; %o A120111 [A120111(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, May 05 2023 %o A120111 (SageMath) %o A120111 def A014963(n): return lcm(range(1,n+1))/lcm(range(1,n)) %o A120111 def A120111(n,k): %o A120111 if (k<n-1): return 0 %o A120111 elif (k==n-1): return -A014963(n+1) %o A120111 else: return 1 %o A120111 flatten([[A120111(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, May 05 2023 %Y A120111 Cf. A014963, A120108, A120112. %K A120111 easy,sign,tabl %O A120111 0,2 %A A120111 _Paul Barry_, Jun 09 2006