This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120112 #30 May 10 2023 03:09:26 %S A120112 1,-1,-2,-1,-4,0,-6,-1,-2,0,-10,0,-12,0,0,-1,-16,0,-18,0,0,0,-22,0,-4, %T A120112 0,-2,0,-28,0,-30,-1,0,0,0,0,-36,0,0,0,-40,0,-42,0,0,0,-46,0,-6,0,0,0, %U A120112 -52,0,0,0,0,0,-58,0,-60,0,0,-1,0,0,-66,0,0,0,-70,0,-72 %N A120112 Row sums of number triangle A120111. %C A120112 The last row of the columns in tables A133232 and A133233 are given by this sequence via the formula: if n < k + k*abs(a(n)) then k, otherwise 1 (1 <= k <= n). - _Mats Granvik_, Jan 22 2008 %H A120112 Muniru A Asiru, <a href="/A120112/b120112.txt">Table of n, a(n) for n = 0..5000</a> %F A120112 a(n) = 1 - lcm(1,...,n+1)/lcm(1,...,n) for n > 0. %F A120112 a(n) = 1 - A014963(n+1). - _Joerg Arndt_, Sep 12 2016 %t A120112 Table[If[n==0, 1, 1-LCM@@Range[n+1]/(LCM@@Range[n])], {n,0,100}] (* _G. C. Greubel_, May 05 2023 *) %o A120112 (PARI) a(n) = if (n==0, 1, 1 - lcm(vector(n+1, k, k))/lcm(vector(n, k, k))); \\ _Michel Marcus_, Sep 11 2016 %o A120112 (GAP) Concatenation([1],List([1..70],n->1-Lcm(List([1..n+1],i->i))/Lcm(List([1..n],i->i)))); # _Muniru A Asiru_, Mar 04 2019 %o A120112 (Magma) %o A120112 A120112:= func< n | n eq 0 select 1 else 1-Lcm([1..n+1])/Lcm([1..n]) >; %o A120112 [A120112(n): n in [0..100]]; // _G. C. Greubel_, May 05 2023 %o A120112 (SageMath) %o A120112 def A120112(n): %o A120112 return 1 if n == 0 else 1 - lcm(range(1,n+2)) // lcm(range(1,n+1)) %o A120112 [A120112(n) for n in range(101)] # _G. C. Greubel_, May 05 2023 %Y A120112 Cf. A014963, A120111, A133232, A133233. %K A120112 easy,sign %O A120112 0,3 %A A120112 _Paul Barry_, Jun 09 2006