cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120133 Shortest side of primitive Heronian triangles, sorted on longest side(A120131), then on middle side(A120132) and finally on shortest side.

This page as a plain text file.
%I A120133 #19 Nov 14 2019 19:35:29
%S A120133 3,5,5,5,10,4,13,9,8,16,11,7,10,13,13,12,7,14,3,17,17,20,6,17,11,5,8,
%T A120133 15,25,19,15,13,12,24,16,17,25,10,29,13,25,15,9,17,18,29,15,17,13,25,
%U A120133 29,21,39,26,20,25,13,27,25,37,15,5,25,24,28,4,51,26,20,25,53,33,41,17,15,11
%N A120133 Shortest side of primitive Heronian triangles, sorted on longest side(A120131), then on middle side(A120132) and finally on shortest side.
%H A120133 Giovanni Resta, <a href="/A120133/b120133.txt">Table of n, a(n) for n = 1..10000</a>
%H A120133 Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/tritab.html">Heronian Triangle Table</a>
%H A120133 P. Yiu, <a href="http://math.fau.edu/yiu/RecreationalMathematics2003.pdf">Heron triangles with sides < 100</a>, Recreational Mathematics, Appendix Chap. 9.3 pp. 81/360. (This is a download of 360 pages.)
%t A120133 hQ[a_,b_,c_] := IntegerQ@ Sqrt@ Block[{s = (a+b+c)/2}, s (s-a) (s-b) (s-c)]; Reap[Do[If[ GCD[a, b, c] == 1 && hQ[a, b, c], Sow@c], {a, 60}, {b, a}, {c, a-b+1, b}]][[2, 1]] (* _Giovanni Resta_, May 21 2016 *)
%Y A120133 Cf. A120131, A120132, A072294.
%K A120133 nonn
%O A120133 1,1
%A A120133 _Lekraj Beedassy_, Jun 10 2006