This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120155 #6 Jul 07 2023 05:45:54 %S A120155 10,13,18,24,32,42,56,75,100,133,178,237,316,421,562,749,999,1332, %T A120155 1776,2368,3157,4209,5612,7483,9977,13303,17737,23650,31533,42044, %U A120155 56059,74745,99660,132880,177173,236231,314975,419966,559955,746607 %N A120155 a(n) = 10 + floor( (1 + Sum_{j=1..n-1} a(j) )/3 ). %H A120155 G. C. Greubel, <a href="/A120155/b120155.txt">Table of n, a(n) for n = 1..1000</a> %t A120155 A120155[n_]:= A120155[n]= 10 +Quotient[1 +Sum[A120155[k], {k,n-1}], 3]; %t A120155 Table[A120155[n], {n,60}] (* _G. C. Greubel_, Jun 20 2023 *) %o A120155 (Magma) %o A120155 function f(n,a,b) %o A120155 t:=0; %o A120155 for k in [1..n-1] do %o A120155 t+:= a+Floor((b+t)/3); %o A120155 end for; %o A120155 return t; %o A120155 end function; %o A120155 g:= func< n,a,b | f(n+1,a,b)-f(n,a,b) >; %o A120155 A120155:= func< n | g(n,10,1) >; %o A120155 [A120155(n): n in [1..60]]; // _G. C. Greubel_, Jun 20 2023 %o A120155 (SageMath) %o A120155 @CachedFunction %o A120155 def A120155(n): return 10 +(1+sum(A120155(k) for k in range(1,n)))//3 %o A120155 [A120155(n) for n in range(1,61)] # _G. C. Greubel_, Jun 20 2023 %Y A120155 Cf. A072493, A073941, A112088. %K A120155 nonn %O A120155 1,1 %A A120155 _Graeme McRae_, Jun 10 2006